40-50-day Oscillation Revealed in 1963 in a Chinese Journal, Eight Years before Madden and Julian

> Tim Li* (UH), Bin Wang (UH), Bill Lau (UM), Chidong Zhang (NOAA), Lu Wang (UH), Melinda Peng (NRL) and K.-C. Kuo (NTU)

> > *University of Hawaii and NUIST

Li et al., 2018: A Paper on Tropical Intraseasonal Oscillation Published in 1963 in a Chinese Journal, **Bull. Amer. Meteor. Soc**. in press.

Madden-Julian Oscillation: A 40-50 day oscillation in tropics

MJO is one of most important discoveries in tropical atmosphere in 20th Century. Paper by M&J71 is one of most cited references in modern meteorology !

Madden and Julian, 1971

MJO Structure and Propagation Schematic (Madden and Julian 1972)

• Extreme weather in East Asia

McPhaden (1999)

Long-Persistent (23 days) Ice-Storm Events in South China

Affected Area: **10 Provinces** Economic loss: **105 B CNY**

During Jan. 10 – Feb. 1, 2008, there were four events. CMA was able to forecast each event at a short lead, but could not predict the persistent events in advance.

Tropical MJO activity during Jan-Feb 2008

(a) The Hovmüller diagram for the daily OLR anomaly averaged over 15°-5°S. The shading denotes the raw OLR data and the contour represents 20-70-day filtered anomalous OLR.

(b) Time series of the SH index (defined as the averaged SLP (hPa) over 80°-120°E, 40°-60°N). The gray shading denotes the periods of the enhanced SH.

Hong and Li, 2009, JC

Observed MJO-TC Relationship

(Liebmann et al. 1994)

Increased (decreased) TC frequency during MJO active (inactive) phase

Eric D. Maloney, and Dennis L. Hartmann Science 2000;287:2002-2004

Figure 2 Tracks of Gulf of Mexico, Caribbean Sea, and western Atlantic tropical cyclones that form to the west of 77.5°W when the MJO index has a magnitude greater than 1 SD from zero.

Figure 4 Atlantic tropical storm and hurricane positions during westerly (greater than 1 SD) (A) and easterly (less than -1 SD) (B) MJO phases.

WCRP: Seamless Weather-Climate Prediction

International Observational Campaign DYNAMO/CINDY (Oct 2011 - Jan 2012) Objective: Understanding MJO initiation mechanism

Left: Time-longitude section of unfiltered rainfall field along the equator (averaged at 10S-10N)

Top: **3-hourly intensive observational networks** (two ships, two island stations) Xie et al. (1963) (hereafter Xie63) discovered a 40-50day period oscillation in zonal wind over southeast Asian monsoon domain, published in a Chinese meteorological journal in 1963, 8 years earlier than M&J (1971).

Xie et al., 1963: Relation between the Southeast Asian Basic Flow and Typhoon Occurrence – Statistics and Analysis. <u>ACTA Meteorologica Sinica</u>, Vol 33, No 2, May 1963

Radiosonde Stations Examined by Xie et al (1963)

Station 5 on Canton Island was used by Madden and Julian (1971).

Westerly Wind Oscillations over Stations 371, 900 and 836 (Xie et al. 1963)

Original Fig. 2 from Xie et al. (1963), who indicated a one and half month period for the summer westerly variation in the monsoon region.

Comparing Xie63 hand-draw result with station soundings and NCEP reanalysis

Xie's hand-draw figures are confirmed by archived soundings and modern reanalysis data.

Time series of 700-hPa 5-day running mean zonal wind (m s⁻¹) from June 1 to September 1 in 1958, 1959 and 1960. Red curves are from archived station radiosonde data, and black curves are from nearby NCEP grid point data.

Power Spectrum Analysis of Zonal Wind (1958-1970)

Variance spectra for zonal wind $(m^2 s^{-2})$ at 150 hPa (blue solid), 700 hPa (black solid) and 850 hPa (red solid) for Station (a) 43371, (b) 48900, and (c) 91701 during **1958-1970**.

Dotted lines mark the 95% confidence level

(d) is original Fig. 2 of M&J71

Variance spectra for zonal wind (m² s⁻²) at 150 hPa (blue solid), 700 hPa (black solid) and 850 hPa (red solid) for Station 43371, 48900, and 91701 during the three-year (1958-1960) period studied by Xie63. Dotted lines mark the 95% confidence level.

Vertical Distribution of 40-50-day Oscillation at 5 Stations

18

Co-Spectrum between 850-hPa and 150-hPa Zonal Wind and Coherence-Squared Statistic

Co-spectrum between 850-hPa and 150-hPa zonal wind $(m^2 s^{-2})$ during 1958-1970 (top curves) and coherencesquared statistic for 850-hPa and 150-hPa zonal wind (bottom **curves**) at Station (a) 43371, (b) 48900, and (c) 91701. The 95% confidence level is denoted by the thin line. The original Fig. 1 from MJ71 is shown in (d) in comparison to the current analysis at Station 91701 (c).

Origin of the 40-50-day Zonal Wind Oscillation (1958-70)

Lagged regression patterns of 30-60-day filtered 700-hPa wind anomalies (vectors, m s⁻ ¹) and vorticity anomaly (shading, 10^{-6} s⁻¹) against 30-60-day filtered zonal wind anomalies averaged over the reference box $(7.5^{\circ} \text{ N}-$ 12.5° N, 105° -125° E) (marked in green) for the period of June-September, **1958-1960**. Brown curves are hand drawn to mark the anomalous large-scale cyclonic circulation.

More Frequent TC Formation in Westerly Phase

Xie et al. (1963)

TC often formed near the confluence zone where monsoon westerly meets trade easterly.

Westerly Phase vs. Typhoon Occurrence at Stations 371, 900 and 836 (Xie et al. 1963) in 1958-1960

↑ Occurrence of typhoon

Composite of 20-60 day filtered 700-hPa wind anomalies (vector), rainfall anomalies (shading) and TC genesis (dotted) in JJAS during 1958-1970

Composite patterns of 30-60-day filtered 700hPa wind anomaly (vectors, m s⁻¹) and TC genesis location (dotted) for (a) MJO westerly phase and (b) MJO easterly phase in June - September during 1958-1970

TC genesis frequency is positively correlated with westerly phase of ISO in the WNP.

30 years later, people started to notice a close relation between TC Genesis and MJO active/inactive phase !

Hartmann et al. (1992)

FIG. 10. Histogram for the recurrence interval between cyclones with wind speeds in excess of 64 kt, during the September-December season, and (a) within the 20-degree circular region centered at 12.5°N, 142.5°E, or (b) within the 20-degree circular region centered at 5°N, 145°E.

Liebmann, et al. (1994)

Fig. 3. (a) Number of first reports of depressions, storms, and typhoons that occur per 100 days in the MJO active and inactive phases.

Summary

- A 40-50-day oscillation in zonal wind was first discovered by Xie et al. (1963) in the Southeast Asian monsoon domain, **eight years** before M&J71. The signal is so strong that one can identify the oscillation without filtering.
- Typhoon genesis occurs more frequently in the western Pacific during the westerly phase of the 40-50-day oscillation. This discovery by Xie63 was about 3 decades earlier than Hartmann et al. (1992) and Liebmann et al. (1994).

Should we call the oscillation Xie Oscillation, or Xie-Madden-Julian Oscillation (XMJO)?

With meteorology as a science that impacts people's living globally and is pursued by people everywhere, there must exist many hidden gems published in early days in non-English journals that were unknown beyond their countries. This current paper serves the purpose of bringing one of such gems and encourages others to do the same.

How does the ISO influence TC genesis in the WNP?

- Impact on synoptic-scale disturbances
- Barotropic eddy kinetic energy (EKE) conversion
- Change of background mean vorticity and humidity

Dominant Synoptic Mode in WNP – Synoptic Wave Train

Time sequences of synoptic-scale surface wind patterns associated with synoptic wave train (SWT). Red dot indicates the center location of typhoon "Man-yi" at the day of genesis.

Fu, Li, et al. 2007

Synoptic 850hPa wind (vector) and vorticity (contour) during ISO wet (left) and dry (right) phase (Zhou and Li 2010, JC)

Energy conversion between eddy and LFBS (left) and between eddy and ISO(right)

 ΔCK phase-dependent

Indicating an opposite energy conversion between ISO and synoptic-scale flows during ISO wet and dry phase

A new EKE diagnosis method (Hsu, Li, et al. 2011)

1) A dependent variable may be separated into three components

- $A = \widetilde{A} + \widetilde{A} + A' = \widetilde{A} \quad Low-frequency background state (LFBS, >90days)$ $\widetilde{A} = 10-90-day ISO$
 - A' 3-10-day synoptic-scale disturbance

2) By multiplying u' and v' in the both sides of the synoptic-scale momentum equations, one may derive the perturbation EKE equation.

$$\frac{\partial \mathbf{K}'}{\partial t} = -u'(\frac{\partial \overline{u}}{\partial t} + \frac{\partial \widetilde{u}}{\partial t}) - v'(\frac{\partial \overline{v}}{\partial t} + \frac{\partial \widetilde{v}}{\partial t}) \qquad \mathbf{K'} = (\mathbf{u'}^2 + \mathbf{v'}^2)/2$$

$$-u'(\overline{u} + \widetilde{u} + u')(\frac{\partial \overline{u}}{\partial x} + \frac{\partial \widetilde{u}}{\partial x} + \frac{\partial u'}{\partial x}) - v'(\overline{u} + \widetilde{u} + u')(\frac{\partial \overline{v}}{\partial x} + \frac{\partial \widetilde{v}}{\partial x} + \frac{\partial v'}{\partial x})$$

$$-u'(\overline{v} + \widetilde{v} + v')(\frac{\partial \overline{u}}{\partial y} + \frac{\partial \widetilde{u}}{\partial y} + \frac{\partial u'}{\partial y}) - v'(\overline{v} + \widetilde{v} + v')(\frac{\partial \overline{v}}{\partial y} + \frac{\partial \widetilde{v}}{\partial y} + \frac{\partial v'}{\partial y})$$

$$-u'(\overline{\omega} + \widetilde{\omega} + \omega')(\frac{\partial \overline{u}}{\partial p} + \frac{\partial \widetilde{u}}{\partial p} + \frac{\partial u'}{\partial p}) - v'(\overline{\omega} + \widetilde{\omega} + \omega')(\frac{\partial \overline{v}}{\partial p} + \frac{\partial \widetilde{v}}{\partial p} + \frac{\partial v'}{\partial p})$$

$$-u'(\frac{\partial \overline{\phi}}{\partial x} + \frac{\partial \widetilde{\phi}}{\partial x} + \frac{\partial \phi'}{\partial x}) - v'(\frac{\partial \overline{\phi}}{\partial y} + \frac{\partial \phi}{\partial y} + \frac{\partial \phi'}{\partial y})$$

3) Apply a **10-day low-pass filtering operator** (denoted by a single overbar) to the perturbation EKE equation, we have

 $\frac{\partial \overline{\mathbf{K'}}}{\partial t} = \mathbf{C}\mathbf{K} + \mathbf{C}\mathbf{A} + \mathbf{A}\mathbf{M} + \mathbf{A}\mathbf{E} + \mathbf{F}\mathbf{G}$

$$\mathbf{C}\mathbf{K} = -V'((\overline{V}_3 + \widetilde{V}_3 + V_3') \cdot \nabla_3)\overline{V} - V'((\overline{V}_3 + \widetilde{V}_3 + V_3') \cdot \nabla_3)\widetilde{V}$$

barotropic energy conversion from the LFBS and ISO flows to the synoptic-scale eddy

 $CA = -\frac{R}{p} \overline{T'\omega'}$ baroclinic energy conversion from EAPE to EKE $AM = AMm + AMi = -\overline{V_3} \cdot \nabla_3 K' - \overline{V_3} \cdot \nabla_3 K'$ advections of EKE by both the LFBS
(AMm) and the ISO (AMi) flows $AE = -\overline{V_3'} \cdot \nabla_3 K'$ advection of EKE by the synoptic-scale eddy $FG = -\overline{\nabla_3} \cdot (V'\phi')$ convergence of eddy geopotential flux

CK and AM terms explicitly reflect the eddy-mean flow interactions. CA, AE, FG terms reflect the eddy-eddy interactions.

Strategy to isolate the ISO-SSV interaction

$$\frac{\partial \overline{\mathbf{K'}}}{\partial t} = \mathbf{C}\mathbf{K} + \mathbf{C}\mathbf{A} + \mathbf{A}\mathbf{M} + \mathbf{A}\mathbf{E} + \mathbf{F}\mathbf{G} \quad \text{(a)}$$

The left hand side consists of the sum of the EKE tendencies on both the LFBS and ISO timescales

 $\Delta() = () - \overline{()}$

1) Applying a **90-day low-pass filter**, one may derive LFBS EKE tendency eq. :

$$\frac{\partial \overline{\overline{K'}}}{\partial t} = \overline{\overline{CK}} + \overline{\overline{CA}} + \overline{\overline{AM}} + \overline{\overline{AE}} + \overline{\overline{FG}} \qquad (b)$$

2) **Subtracting** the LFBS EKE tendency from Eq.(a), one may derive the time change rate of **EKE on the intraseasonal timescale:**

$$\frac{\partial \tilde{K}'}{\partial t} = \Delta CK + \Delta CA + \Delta AM + \Delta AE + \Delta FG$$

△ CK (shading) results from NE-SW tilted SSV interacting with ISO flow (vector)

Both divergent and rotational ISO flows contribute to enhanced CK during ISO wet phase

Relationship between the barotropic energy conversion (CK) and the TC genesis

shading : total CK=CK+ Δ CK dot : TC genesis location

- Enhanced CK favors the development of synoptic seed disturbances, some of which eventually grow into TCs.
- TC genesis number during the ISO wet phase is about 1.5 times greater than that during the ISO dry phase.

• What is the relative importance of the ISO dynamic and thermodynamic fields in affecting TC development?

Cao, X., **T. Li**, M. Peng, W. Chen, and G. H. Chen, 2014, Effects of the monsoon trough intraseasonal oscillation on tropical cyclogenesis over the western North Pacific, *J. Atmos.* Sci., 71, 4639-4660.

Model and experimental design—— large-scale flow field, model configuration and bogus vortex

- Triply nested. Horizontal resolution of 27, 9 and 3 km.
- Beta-plane (15°N) and a quiescent environment with constant SST (29°C).
- A fixed lateral boundary condition.
- A weak initial balanced axisymmetric vortex. Vm= 8 m/s, RMW= 150 km
- The vorticity maximum is at the surface and decreases upward (Wang 1995, 2001) ₃₇

Model and experimental design—experimental design

	Group 1	Group 2		Group 3	
Beta plane	CTL	ACV	AC	IACV	IAC
MT ISO	No	Active	Active	Inactive	Inactive
Vortex	Yes	Yes	No	Yes	No

The list of numerical experiments

To examine "pure" vortex evolutions, background ISO fields need to be removed.

Time evolution of (a) the **minimum sea level pressure** (unit: hPa) and (b) the **maximum azimuthal mean wind speed** (unit: m s⁻¹) at 10 m in the three experiments **CTL** (**black solid line**), **ACV** (**red dashed line**) and **IACV** (**blue dotted line**).

40

Radial wind

The overbar are ISO wind. The prime is vortex perturbation wind.

41

1000

0 45 90 135 180 225 270

R(km)

P(hPa)

P(hPa)

P(hPa)

P(hPa)

1000

0 45 90 135 180 225 270

R(km)

1000

0 45 90 135 180 225 270

R(km)

Active

Inactive

43

W

FT1 1	C	• • • • •	•
The list	ot se	nsitivity	experiments
I no not	OI BU		caperments

	Grou	up 1	Group 2	
Beta plane	ACV_NOSH	AC_NOSH	ACV_SH	AC_SH
MT ISO	Active	Active	Active	Active
Variables	u, v, ps, T, hgt	u, v, ps, T, hgt	sh	sh
Vortex	Yes	No	Yes	No

"NOSH" denotes prescribed ISO dynamic fields but no moisture field; "SH" denotes prescribed ISO moisture field but no dynamic fields.

Time evolution of (a) the minimum sea level pressure (unit: hPa) in the four experiments CTL, ACV, ACV_SH and ACV_NOSH.

) The dynamic factors of the active ISO exert a greater impact on the vortex development during the initial 6 hours.

2) The **thermodynamic** effect of the active ISO becomes more important **in the later development stage**.

Summary

1) ISO modulates TC genesis through both dynamic and thermodynamic processes.

a. Dynamic processes: Interactions between ISO-scale and vortex-scale cyclonic flows during ISO active phase lead to the generation of vortex-scale outflow at mid-level, which helps upward lifting of friction-induced ascending motion and thus upward moisture transport. Interactions between ISO-scale anticyclonic flow and vortex-scale cyclonic flow during ISO inactive phase lead to the generation of vortex-scale inflow at mid-level, which prohibits friction-induced ascending motion and thus suppresses TC development.

b. Thermodynamic process: **A greater background specific humidity associated with active ISO** promotes earlier and stronger TC development.

- 2) The ISO thermodynamic impact is about two times as large as that of the dynamic impact during active phase of ISO.
- 3) The dynamic impact of the anticyclonic flow during inactive ISO phase inhibits TC development in the absence of the summer mean flow.