Tralynn Chen Statistican Central Weather Bureau

多變量統計後處理

Empirical Methods of Multivariate Ensemble Statistical Post Processing : Affine Kernel Density and Shuffling Technique

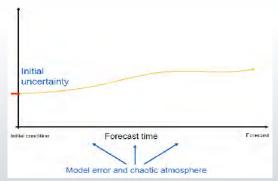
AGENDA

Introduction and Background Univariate Statistical Post Processing Multivariate Ensemble Statistical Post Processing Research Examples Summary Introduction and Background

Introduction and Background

Univariate Statistical Post Processing

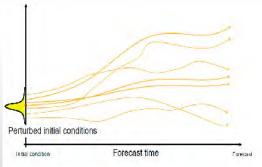
Multivariate Ensemble Statistical Post Processing


Research Example

Summary

Numeric Weather Prediction System (NWP)

- Model Imperfection.
- Deficit Initial Condition
- Probability forecasting based on multiple members from NWP


Result In : Forecast error increase as integrated along the forecast leadtime.

Numeric Weather Prediction System (NWP)

- Model Imperfection.
- Deficit Initial Condition
- Probability forecasting based on multiple members from NWP

Result In : Forecast error increase as integrated along the forecast leadtime.

Develop Model Output Statistics (MOS)

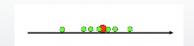
Model Output Statistics

- Bayesian Model Average (BMA)
- (Extended) Logistic Regression
- Ensemble Model Output Statistics
- Affine Kernel Dressing

 $\label{eq:Methodology: Applied SPP on specific variable, with each forecast leadtime.$

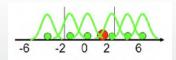
Introduction and Background

Univariate Statistical Post Processing


Multivariate Ensemble Statistical Post Processing

Research Example

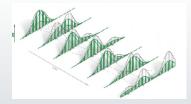
Summary


Affine Kernel Dressing

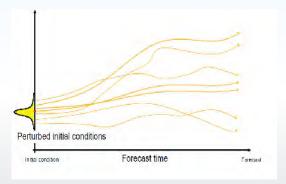
Forecast from Ensemble members of NWP system

Affine Kernel Dressing

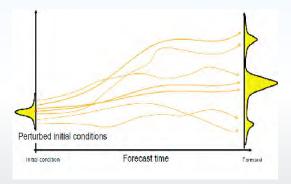
- Forecast from Ensemble members of NWP system
- ► Applies unit kernel function, K (e.g. Gaussian), to each ensemble member x_i

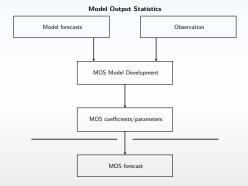

Affine Kernel Dressing

- Forecast from Ensemble members of NWP system
- ► Applies unit kernel function, K (e.g. Gaussian), to each ensemble member x_i
- Combines and sum up the kernel functions


Affine Kernel Dressing (Brocker and Smith, 2008)

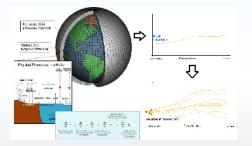
Applies unit kernel function, K(e.g. Gaussian), to each ensemble member x_i and then combines them:


$$p(y; x, \theta) := \frac{1}{N\sigma} \sum_{i=1}^{N} w_i \cdot K\left(\frac{y - ax_i - \omega}{\sigma}\right)$$


Ensemble Members from NWP

Ensemble Members from SPP

Development of AKD parameter


AKD Model Development

- Reforecast/Hindcast Data
- Learning/Training process for AKD parameter

AKD parameters for the further output processing

Embryonic form on Machine Learning

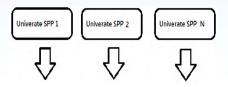
Global Forecast Model

Multivariate Definition

- Several variables (t2m, pressure,...) is included in a Model
- Variables are presented in a grid with several layers
- Forecast leadtime frame a time dimension in a Model

Motivate Multivariate Ensemble Statistical Post-Processing

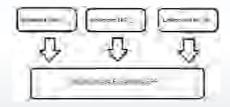
Introduction and Background

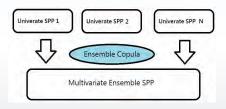

Univariate Statistical Post Processing

Multivariate Ensemble Statistical Post Processing

Research Example

Summary


Scope of Multivariate

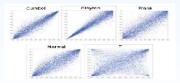

Developing Multivariate Ensemble Statistical Post Processing

- Inter-Variable
- Spatial Variable
- Time Series

From Univariate Statistical Post Processing to Multivariate Ensemble Statistical Post Processing

From Univariate Statistical Post Processing to Multivariate Ensemble Statistical Post Processing

Dependence Modeling – Sklar Theorem (Sklar, 1959)

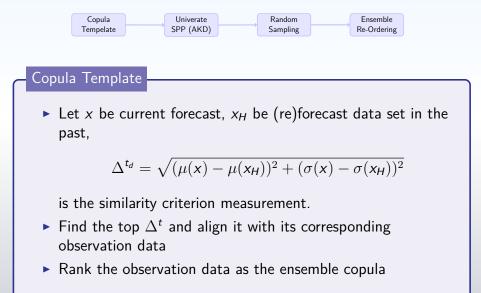

For every joint probability distribution H, there is a copula C such that:

$$H(x,y) = C (F(x), G(y))$$

If F_{XY} is continuous then C is unique

- C Copula function
- F marginal distribution of X
- ► G marginal distribution of Y

Parametic Coupla


Assume variable $y(i) = Y(v, s, \tau)$ where i = 1, ..., M and

- ► v : Variable
- s : Location
- τ : Forecast Leadtime

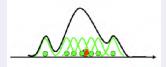
$$F(y_1,\ldots,y_M) = C(F(y_1),\ldots,F(y_M))$$

Suppose 5 variables (t2m,tp,rh,...) with 10 layers and 100X100 grids on 4-week forecast leadtime Problem with Parametric Copula : High Dimension Parameter!

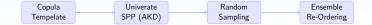
Nonparametric Method : Schaake's Shuffle

Nonparametric Method : Schaake's Shuffle

Univariate SPP


Applied AKD for each location, time and variable and obtain marginal CDF $% \left(\mathcal{A}_{n}^{\prime}\right) =\left(\mathcal{A}_{n}^{\prime}\right) \left(\mathcal{A$

Nonparametric Method : Schaake's Shuffle



Random Sampling

Random sampling from marginal CDF of forecast

Nonparametric Method : Schaake's Shuffle

Ensemble Re-Ordering

Applied copula template on new sampling data for forecast.

Example on Schaake's Shuffle

Assume with a data set at location j and time k with two variables of ensemble size N=5 is describing by the following:

$$Y = \{y^1, y^2\} = \begin{bmatrix} y_1^1 & y_1^2 \\ y_2^1 & y_2^2 \\ y_3^1 & y_3^2 \\ y_2^1 & y_4^2 \\ y_5^1 & y_5^2 \end{bmatrix} = \begin{bmatrix} 11 & 2.2 \\ 14 & 2.3 \\ 13 & 2.5 \\ 12 & 2.1 \\ 15 & 2.4 \end{bmatrix} \Rightarrow R = \begin{bmatrix} 1 & 2 \\ 4 & 3 \\ 3 & 5 \\ 2 & 1 \\ 5 & 4 \end{bmatrix}$$

Example on Schaake's Shuffle

Assume with a data set at location j and time k with two variables of ensemble size N=5 is describing by the following:

$$Y = \{y^1, y^2\} = \begin{bmatrix} y_1^1 & y_1^2 \\ y_2^1 & y_2^2 \\ y_3^1 & y_3^2 \\ y_4^1 & y_4^2 \\ y_5^1 & y_5^2 \end{bmatrix} = \begin{bmatrix} 11 & 2.2 \\ 14 & 2.3 \\ 13 & 2.5 \\ 12 & 2.1 \\ 15 & 2.4 \end{bmatrix} \Rightarrow R = \begin{bmatrix} 1 & 2 \\ 4 & 3 \\ 3 & 5 \\ 2 & 1 \\ 5 & 4 \end{bmatrix}$$

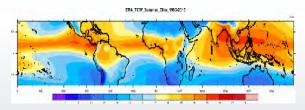
Present forecast data for the two variables as the following:

$$Y' = \{y^1, y^2\} = \begin{bmatrix} 10 & 2.8\\ 19 & 2.6\\ 15 & 2.4\\ 17 & 2.2\\ 13 & 2.0 \end{bmatrix} \Rightarrow X = order \begin{bmatrix} 1 & 2\\ 4 & 3\\ 3 & 5\\ 2 & 1\\ 5 & 4 \end{bmatrix} (Y') = \begin{bmatrix} 10 & 2.2\\ 17 & 2.4\\ 15 & 2.8\\ 13 & 2.0\\ 19 & 2.6 \end{bmatrix}$$

Therefore, rank(X) = rank(Y)

Introduction and Background

Univariate Statistical Post Processing

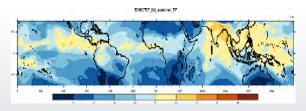

Multivariate Ensemble Statistical Post Processing

Research Example

Summary

MESPP Example

- ECMWF model
- Total column water (tcw)
- ▶ Reforecast data time frame : 1995 2015

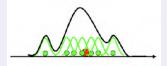


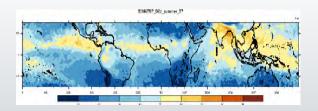
summer average on tcw during 1995-2015 (source: EC-Interim)

AKD

AKD Parameter

Reforecast data set from 1995-2015 to train parameter through AKD scheme of MOS. Then applied kernel unit on the following:

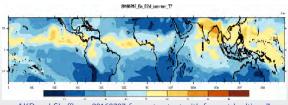



20160707 forecast output with forecast leadtime 7

AKD : Random Sampling

Random Sampling

Random sampling according to akd-derived pdf



Ensemble Copula

Reordering AKD sample

Apply Ensemble Copula on to AKD sampling for forecast SPP

AKD and Shuffle on 20160707 forecast output with forecast leadtime 7

Summary

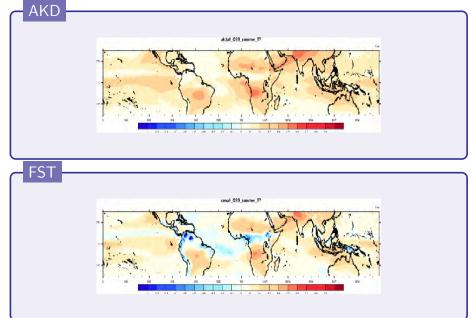
Introduction and Background

Univariate Statistical Post Processing

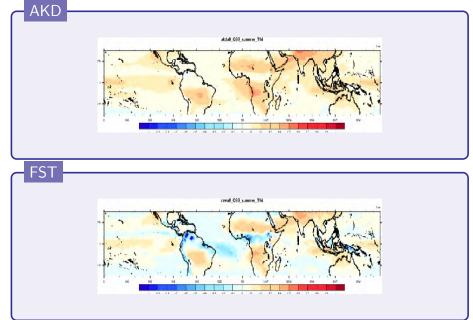
Multivariate Ensemble Statistical Post Processing

Research Example

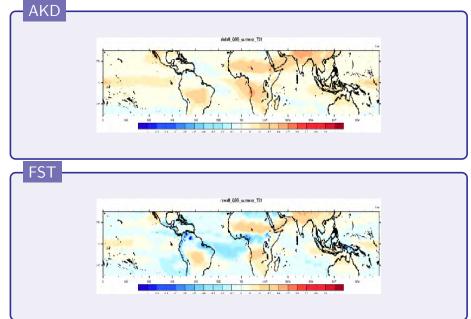
Summary


Skill Score Define

Skill Score

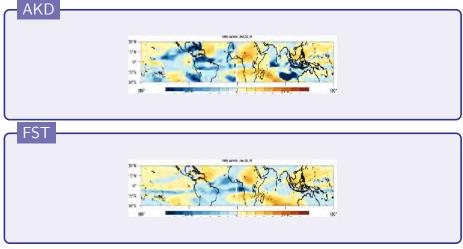

Brier Skill Scores (Murphy and Winkler 1992)

$$SS = \rho_{f_X}^2 - \left[\rho_{f_X} - \frac{\sigma_f}{\sigma_x}\right]^2 - \left[\frac{\mu_f - \mu_x}{\sigma_x}\right]^2$$


Forecast lead time = 7 / Summer

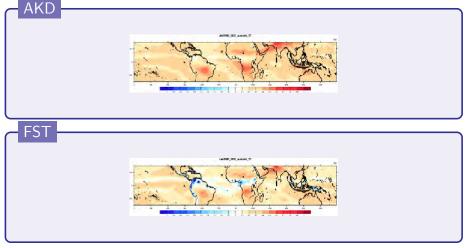
Forecast lead time = 14 / Summer

Forecast lead time = 21 / Summer

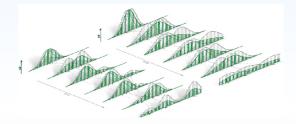

AKD akdall_Q33_summer_T28 FST rawall_089_summer_T28

Forecast lead time = 28 / Summer

- Potential bulky data storage
- Corresponding reliance of observation data
- Consumption on Computational time


Skill Score of AKD with Cross-Validation on the year 1996 (1995-2016)

Source of observation : Initial forecast time at 00



Skill Score of AKD with Cross-Validation on the year 1996 (1995-2016)

Source of observation : EC-Interim

Summary Expansion on MESPP

- Different scheme on univariate statistical post processing
- Methodologies on Similarity Criterion
- Choices on Copula

Summary

- Model output statistics could be one of many schemes of machine learning
- Stock up history/hindcast/reforecast data is necessary
- AKD could increase skill score with validate corresponding history observation data
- Copula is the pathway from univariate SPP to multivariate SPP

Thank You