
Observed equatorial waves





(a) The 11-day (22 Nov. – 2 Dec. 2004) 
mean amplitude of the vertical shear (200 
hPa–850 hPa) of horizontal wind (contour, 
m/s) and the divergence (􏰁 10􏰁 6 s􏰁 1, 
shading) at 850 hpa. The line marked with 
the open circles, closed circles, and 
typhoon signs represents the movement of 
typhoon Nanmadol during the period of 
MRG wave, tropical depression/tropical 
storm, and typhoon respectively. (b) Time-
mean (13 Nov.–12 Dec.) OLR (shading <220 
w/m2) and sea surface temperature (°C). 

Zhou and Wang (2007): GRL
Transition from an eastern Pacific 
upper-level mixed Rossby-gravity wave 
to a western Pacific tropical cyclone 



1. Planetary scale zonal 

circulation coupled with 

large scale of 

convective anomalies.
2. Slow eastward 

propagation gives rise to 
a 40-50 day spectral peak

3. Development over IO and 
decay east of dateline

4. Baroclinic structure with 
Low SLP leading 
convective anomalies

What about horizontal?

MJO skematic (2_D)

Madden and Julian 1972 , 
reproduced by McPhaden
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Schematic of three-Dimensional MJO Structure

Rui and Wang 1990



200hPa winds and divergence

850 hPa winds and u-component

Observed structure of MJO

Wang and Lee 2017



R-High

The horizontal and baroclinic structure is a 
consequence of coupling of convective complex 

and Kelvin and Rossby waves

Wang (2005)







Kunio Yoneyama and 
Chidong Zhang (2012 
DYNAMO )

Observed multi-scale structure of MJO convective complex





Nakazawa (1988)

WIG
K

MJO

10-20 m/s

15-30 m/s

~6 m/s

Observed multi-scale structure of MJO convective 
complex
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Kikuchi, K., and B. Wang 2010
J. Climate, 23, 3814-3834 
Spatio-temporal wavelet transform and the 
multi-scale behavior of the Madden-Julian 
Oscillation Nakazawa case revisit: GMS 

IR ¼  degrees, 3 hrs

Spatio-temporal wavelet transform (STWT)



Hovmo ̈ ller diagram of GMS IR (K) 
averaged between 08 and 58N of (a) the 
original data with the May–July mean 
removed and (b)–(f) its filtered 
components: (b) WIG waves, (c) Kelvin 
waves, (d) the MJO, (e) Rossby waves, and 
(f) MRG and EIG waves. Labels ‘‘A’’ to ‘‘D’’ 
in (a) and (d) are the same as the labels 
used in Fig. 1 of Nakazawa (1988), 
indicating the four super cloud clusters. 
White lines in (c) and (d) are phase lines 
along with the Kelvin wave and MJO, 
respectively, drawn with reference to 
their amplitudes, which will be used in 
the composite later (e.g., Fig. 7). The 
contour lines of the MJO at 25 W m22 are 
superimposed by thick solid curves for 
reference. 

KIKUCHI AND WANG 2010: 
Spatiotemporal Wavelet Transform 
and the Multiscale Behavior of the 
Madden–Julian Oscillation* J. Climate



Atmospheric Equatorial Waves

1. Equations governing tropical atmospheric motion

2. Equatorial kelvin waves

3. General solution

3a. Horizontal structure

3b. Dispersion diagram

4. Low-frequency Equatorial Rossby Waves

5. High-frequency Inertio-Gravity Waves

6. Mixed Rossby-gravity waves (Yanai waves)

7. How mean flow can change the EWs



1. The two-level model for the atmosphere in 

p-coordinates

• This is the simplest mathematical approximation

to a vertically continuous atmospheric motion,

which was first advanced by Phillips (1954). The

linear equations in p-coordinates for adiabatic

and frictionless motion are

(3.5.1a)

(3.5.1b)

(3.5.1c)

(3.5.1d)

where is the static stability parameter

(note, the model includes temperature change). The

temperature has been expressed as a function of

in terms of the equation of state.
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• Using a finite difference approximation to the

vertical derivatives, write the horizontal

momentum equations and continuity equation at

level 1 and 3, and thermo-dynamic equation at

level 2, using vertical B.C.’s (3.5.2a,b), we have

(3.5.3a)

(3.5.3b)

(3.5.3c)

(3.5.3d)

(3.5.3e)

(3.5.3f)

(3.5.3g)
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• Taking the differences, (3.5.3d)-(3.5.3a) and

(3.5.3e)-(3.5.3b), and using the continuity

relation (3.5.3c) and (3.5.3f) in (3.5.3g), we

obtain equations for the baroclinic component:

(3.5.4a)

(3.5.4b)

(3.5.4c)

where

(3.5.5a)

and

(3.5.5b)
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• and are zonal and meridional thermal

winds, is thickness, and represents the speed

of internal gravity waves. Equations (3.5.4a,b,c)

describe the first (lowest) baroclinic mode.

The equation is the same form as those of

shallow water equations except that the parameter

differs from that of the shallow-water model.

Taking , , . This

is the internal gravity wave speed for a dry

atmosphere.Taking the density scale height ,

the external gravity wave speed in the shallow-

water model is . Thus, .

~u ~v
~
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1 ms 50c

km 9H

-1

0 ms 300c 01 cc 



• We shall use a shallow-water equatorial beta-plane model to

discuss equatorial waves.

• The model equations in a linear framework can be written as

where is the long gravity wave speed, either for external

or internal modes. Depending on different vertical modes, it

can take on different values.
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(4.7.1a)

(4.7.1b)

(4.7.1c)



• There are two parameters in (4.7.1), and , which form

two intrinsic scales: a length scale (equatorial

Rossby radius of deformation) and a time scale ,

where is the velocity scale for the wave motion and is

a scale for . Using these scales, write

where the prime denotes non-dimensional quantities.
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The non-dimensional equation of (4.7.1a,b,c) become

The domain is a horizontally infinite equatorial beta-

plane. Matsuno (1966) proposed the adequate side boundary

conditions:

are bounded as .
(4.7.4)
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• In the real atmosphere, the position of the poles puts an

upper limit on so rigorous boundary conditions should be

different. However, the approximate condition (4.7.4) has

little effect on the solutions of the lower -modes, as

will be seen later.

 y

 y



2. Equatorial Kelvin waves

In the previous section, we have learned that the

existence of a side boundary is responsible for coastal

Kelvin waves, which only have along-boundary motion (no

motion in the direction perpendicular to the side boundary).



• In this subsection we first examine a special case in which

the meridional motion is identically zero, , i.e.,

the motion is exactly in the along-equator direction. Then

the system of equation (4.7.3a,b,c) becomes

Equation (4.7.5) implies that the motion is in geostrophic

balance even near the equator.

 










 





u

t x

 

y
uy









 

















t

u

x
0

 0v

(4.7.5a)

(4.7.5b)

(4.7.5c)



• The combination of (4.7.5a) and (4.7.5c) yields the wave

equation

• The general solution of this system is

where is an arbitrary function. Substituting this into

(4.7.5a), we find
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• We choose only the "-" sign because the other choice leads

to an unbounded solution for large . The solution of the

system is of the form

(4.7.6)

or in dimensional form

• The waves represented by (4.7.7) are called Equatorial

Kelvin waves, because the governing equations (4.7.5a,b,c)

are identical to those of coastal Kelvin waves except the

Coriolis force in this case is . The following properties

of the equatorial Kelvin wave are also similar to coastal

Kelvin waves if we regard the equator as a rigid side-wall

boundary.
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• Some remarks are made as follows.

(A) The equatorial Kelvin waves move eastward with the phase

speed of gravity waves, .

(B) The Kelvin waves are trapped near the equator with an e-

folding scale of . For the atmosphere, , ,

while for the ocean , . Higher-order baroclinic

modes are even more tightly trapped near the equator.
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(C) , while is exactly in geostrophic balance with .

Facing the moving direction, high pressure is to the right

(left) in the northern (southern) hemisphere.

 0v  u  



(E) Physically, the equatorial Kelvin waves are just a

long gravity wave trapped to the equator because of Earth's

rotation via geostrophic balance described in (4.7.5b). It

reveals an important property of the equatorial zone: it acts

as a wave guide. [This idea seems to have been first put

forward by Yoshida in 1959].

(D) Kelvin waves are non-dispersive because represents

an arbitrary wave-packet that propagates without changing

shape. This means that the group speed equals the phase

speed, i.e., the energy is also propagated with a speed .

 F
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Fig. 1 Pressure and velocity fields of Equatorial Kelvin waves (matsuno, 1996)



Fig.1 shows the horizontal structure of velocity and

pressure characteristic of Kelvin waves (Matsuno, 1966).

(1) The zonal velocity and pressure distributions are

symmetric about the equator but the meridional velocity is

identically zero.

(2) High (low) pressure is accompanied by west (east)

wind.

(3) At both ends of the pressure system, the features of

a pure gravity wave are marked, while in the central part of

the cell where the longitudinal pressure gradient is weak

and zonal velocity is strong, the geostrophic balance is

pronounced. The latter becomes more dominant for long

Kelvin waves.

 v



3. General solution: dispersion relation

We now examine the general case in which does not

vanish. Since the coefficients of (4.7.3a,b,c) are y-

dependent only, separation of y-dependent and x-dependent

parts to the wave solution is possible.

 v



• Therefore, we search for a wave solution of the form

From (4.7.4),

are bounded, as .

Substituting (4.7.8) into (4.7.3) yields
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• It is most convenient to eliminate and in order to

formulate a single equation for V . Solving for U and

from (4.7.10a) and (4.7.10c) leads to

Using (4.7.11a,b) in (4.7.10b), we find

Note that in deriving Equation (4.7.11), is assumed.
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• Equation (4.7.12) along with the boundary condition for ,

(4.7.9), poses an eigenvalue problem, which is the same as

the Schrödinger equation for a simple harmonic oscillator.

The boundary conditions (4.7.9) are satisfied only when

which determines the eigenvalue for a given . Let
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• From (4.7.12), satisfies the Hermite Equation,

The corresponding eigen-solution of (4.7.15) is given by

(Abramowitz and Stegan, p.781) the mth Hermite polynomial:

The first 6 order's are

(4.7.15)

(4.7.16)
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thus let ,

then
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3a. Horizontal structure

The meridional velocity for the mth eigen-solution,

is described by equations (4.7.14) and (4.7.16). Notice

that with even (odd) is an even (odd) function of in

with nodal points. The values are turning

latitudes: is oscillatory in the interval and

exhibits evanescent (monotonic) decay for .

Obviously, the lower modes are equatorially trapped, since

for large the waves decay exponentially in amplitude.
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• and can be obtained from equations (4.7.11a,b). In

establishing and , it is convenient to use the

following recurrence relation for Hermite's polynomial

For , the , and fields are (from Eq. (4.7.8))
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3b. Dispersion diagram

Equation (4.7.13) is the dispersion equation (non-

dimensional), which describes the relationship between

wavenumber and frequency. For convenience, we specify to be

always positive while can be either positive (corresponding

eastward propagation) or negative (corresponding westward

propagation). The frequency as a function of is plotted

in Fig.2.

 

 k
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Fig. 2 Dispersion diagram for equatorial waves. Assuming k is real, and ω >0 
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• The dispersion equation (4.7.13) suggests three different

types of equatorial waves.

• We first examine the cases (modes). When , the exact

dispersion relation is given by

To obtain a real (number) , which corresponds to propagating

neutral waves (non-decaying), one must require that

i.e.

or

Equations (4.7.20a,b) imply that there are two distinguished

groups of waves: one is high frequency, , and the

other is low frequency, .
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• If the dispersion equation, (4.7.13), is differentiated

with respect to , one finds that the group speed in the

x-direction is

which vanishes at

(if )

The curve is shown in Fig.3 by the dashed line.

Note also that is a necessary condition for to

obtain extrema! One can find out the values of extrema simply

by putting into (4.7.19).
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• Extrema for are

It can be further shown that the points

correspond to minima for high frequency waves, while the

points

correspond to maxima for low frequency waves.

(4.7.25)

(4.7.26a)
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4. Low-frequency Equatorial Rossby Waves

These correspond to the lower branches in the

dispersion diagram. The non-dimensional frequency of these

waves is smaller than , thus the dimensional

frequency . Taking for the atmosphere,

or the period ; taking for the ocean,

or the period .

 1 1 2 029 / .

 
0* 29.0 C   -1

0 ms 50C  * 
 10 5 1s

 days 3.7* T  -1

0 ms 5.2C  * .   215 10 5 1s

 days 34* T



• For low frequency waves, is small, thus . The

dispersion equation can then be approximated by

or

• The higher the index of the vertical mode , the lower

the frequency . The fractional error of (4.8.1a,b) has

a maximum value for of less than 3%.
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• Resuming the dimensional form, the phase speed is

which is the same as a Rossby wave in a beta-plane channel

except the quantized y-wavenumber has a slightly different

form due to the side boundary condition at . These low-

frequency modes are, therefore, called equatorial Rossby

waves. They occur because varies with latitude.

(4.8.2)
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• Equation (4.8.2) indicates that these waves are always

westward propagating. As shown in the previous section,

§4.7, the frequency for Rossby waves reaches maxima

(the frequency at which the group speed is zero) at

• Thus, for long Rossby waves with (taking "+" sign in

(4.8.1a)), the group velocity is westward (the slope is

negative on the dispersion curve in Fig.1) while for short

Rossby waves with (taking "-" sign in (4.8.1a)) the

group velocity is eastward (the slope is positive).
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• For long Rossby waves, , so that

implying that they are approximately non-dispersive. The

dimensional westward phase speed is times the long

gravity wave speed . Thus, the wave speed is at most one-

third of the long gravity wave speed. For example, if

for the first baroclinic mode in the equatorial Pacific

Ocean, the Rossby wave speed is approximately 0.8ms-1;

corresponding to a time of 6 months to cross the Pacific

basin from east to west.

 1m
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 1)12( m
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• Fig.3 depicts geopotential and velocity distributions for

(left panel) and (right panel) modes for equatorial

Rossby waves (after Matsuno, 1966). The figure was drawn

using Eqns.( 4.7.26a,b,c) in the previous section.

• The Rossby waves are characterized by a geostrophic

relationship between pressure and wind fields. Strong zonal

winds are found near equator for the mode, which is

expected from approximate balance between pressure gradient

and Coriolis forces (both of them approach zero as ).

For the mode, and are symmetric, is antisymmetric,

while for the mode, and are antisymmetric about the

equator but is symmetric. There is no meridional motion at

the equator for the mode. What about the mode?
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Fig. 3 Equatorial Rossby waves (m=1 and m=2) (Matsuno,1996)



5. High-frequency Inertio-Gravity Waves

• These are the upper branches in Fig.1, whose frequencies

exceed , or dimensionally, . Taking

for the atmosphere, , or the period

while for the ocean, , or

. The higher the meridional index is, the

shorter the period.

 71.12/11   
0* 71.1 C 

 -1

0 ms 50C  15

* 1077.5  s

 days 26.1* T  -1

0 ms 5.2C  15

* 1029.1  s

 days 63.5* T  m



• For high-frequency waves, where , the dispersion

relation may be approximated by

The fractional error in making this approximation is bounded

by a maximum value of 14% when .

In dimensional form, (4.8.4b) gives

which is similar to the inertio-gravity wave speed in an

,

where is the pure gravity wave speed (if we identify

as and neglect ). Therefore, these high frequency modes

are called inertio-gravity waves, following Matsuno (1966).

 121 

 k mm     2 2 1( )

  2 2 2 1  k mm ( )

 1m

 

2

*

02

0

*

* )12(

mk

mC
C

k





 planef  

2

*

2

*

2
2

0

*

*

lk

f
C

k 




 
0C

 2f  2l

 )12(0 mC

(4.8.4a)

(4.8.4b)

(4.8.5)



• We note that reaches minima at

• For gravity waves with

the group speed is eastward (positive slope on dispersion

curve in Fig.1, right branches), whereas for gravity waves

with

(negative slope, left branches) the group speed is westward.

These features are important in oceanography when considering

wave reflection from meridional coastline. Further discussion

of these modes in the ocean can be referred to Gill (1982).
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• Fig.4 shows the eastward and westward propagating inertio-

gravity waves for and modes. They are essentially

ageostrophic and exhibit the nature of inertio-gravity

waves. The mode is trapped more tightly to the equator.

The mode has symmetric structures in and but

antisymmetric structure in with respect to the equator.

On the other hand, modes have , antisymmetric

while is symmetric about the equator.

 1m  2m
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Fig.4 Pressure and velocity distribution of inertial-gravity waves for m=1 (left 
panel) and m=2 (right panel).

A; Eastward propagating; b:Westward propagating (Matsuno, 19960



• There is a gap in between and , so that two

groups of waves are well separated. In the intermediate

frequency band, ,

Hence

implying a wave propagating westward ( ) and with

amplitude exponentially decaying toward the east or west,

depending on the choice of sign.

(Fig.4 Pressure and velocity distributions of inertial-

gravity waves for (left panel) and (right panel).

a: eastward propagating; b: westward propagating)

(4.8.6)
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6. Mixed Rossby-Gravity Waves

• We now examine the mode. This is a special mode which

has a distinguished nature from the modes in many

aspects!

When , the dispersion equation yields

two roots for :

• Recall that in solving the problem we assume that ,

hence, the second root should be rejected.

 0m

 1m

 0m   2 2 1  k k /
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1
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  2 2 k

(4.8.7)and 



For the mode, we have

thus equations (4.7.11a,b) from the previous section gives

Therefore,

and the solution with is

The dispersion relation (4.8.7) is described by the curve

in Fig.1.
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• It is interesting to notice that for large , one has ,

which is the asymptotic limit of high wave-number gravity

waves. On the other hand, for small , one has ,

which is the high wavenumber limit of the Rossby waves.

For this reason, this particular mode is called Mixed

Rossby-Gravity waves or Yanai waves. This mixed mode is

unique in the equatorial region.

• The crossover point, , corresponds to a dimensional

period , which is about 9.6 days for in

the ocean and about 2.1 days for in the atmosphere.

This is a stationary wave; waves with shorter periods

( ) propagate eastward while waves with periods longer

period ( ) propagate westward.
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• The group velocity for Yanai waves, however, is always

eastward, because

• Fig.5 shows the horizontal distribution of velocity and

pressure characteristics of an eastward moving mixed

Rossby- Gravity waves (Matsuno, 1966). The pressure and

zonal velocity are antisymmetric about the equator while

the meridional component is symmetric. The largest

meridional flow occurs near the equator (cross-equatorial

flow).

• Fig.5 Pressure and velocity distributions of Mixed Rossby-

Gravity waves:

(a) eastward moving ( );

(b) westward moving ( ).
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Fig. 5 Pressure and velocity distribution of mixed Rossby-gravity waves: (a) 
eastward moving (k=0.5); (b)westward moving (k=-0.5)



Wind anomaly (streamline), 
geopotential height anomaly 
(contour) at (left) 850 hPa and 
(right) 600 hPa on (a) 12Z 25 
Nov., (b) 12Z 26 Nov., and (c) 
12Z 27 Nov. The shadings in 
Figure 4 (left) are rain rate 
(>0.3 mm/hr) and in Figure 4 
(right) vorticity (>2 􏰁 10􏰁 5 
s􏰁 1). 

Zhou and Wang 2007



Figure 2. Wind anomaly (streamline) on 500 hPa level and the unfiltered TRMM precipitation rate 
(shading >0.3 mm/hr) on (a) 00Z 22 Nov. 2004, (b) 00Z 24 Nov. 2004, (c) 00Z 26 Nov. 2004, and (d) 
00Z 28 Nov. 2004. Zhou and Wang 2007
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Model for study of effects of Vertical sheared 

flow

Model formulation including vertical sheared flow

Introduce

The two-level model represents two vertical modes, a 

barotropic mode and a baroclinic mode (A.3.2), which 

are governed by
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The baroclinic mode is governed by (A.3.4).

(A.3.4a)

(A.3.4b)

(A.3.4c)

The barotropic mode is 

essentially a Rossby 

wave modified by a 

forcing arising from the 

baroclinic mode acting on 

the vertical shear. 

The barotropic mode is governed by (A.3.3).

The baroclinic mode is 

governed by a modified 

shallow water equation 

including the feedback 

from the barotropic mode. 

The forcing terms on the 

RHSs of Eqs. (A.3.3) and 

(A.3.4) indicate interactions 

between the barotropic and 

baroclinic modes in the 

presence of vertical shear.

Vertical mode interaction under mean vertical shear



ESH

WSH

Wang and Xie (1996)

The baroclinic and barotropic modes are nearly in phase (180o out of phase) in the westerly (easterly) 

shear. Therefore, an easterly (westerly) shear leads to the amplification of Rossby wave responses in 

the lower (upper) level. 

+ =

Easterly  shear Barotropic  TotalBaroclinic  

+ =

Westerly shear

How vertical wind shear Changes structure of the ERW

Coupling of baroclinic and barotropic modes in the presence of vertical shear



Rossby waves will be 

enhanced in the vicinity 

of the latitudes where the 

vertical shear is 

strengthened.

Vertical easterly shear sets in NH only

Monsoon Easterly Vertical Shear can change the horizontal 
structure of ERW dramatically
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Mean Flow Terms
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Structure of three-layer model of ISO
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BSISO Model

The two and half layer model including

Observed Mean flows (U,V,W,T)

Realistic qs or SST

Nonlinear heating (SST dependent trigger 

function and positive only heating)

Initial value problem



July mean state (ER40)
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Mean flows and SST distribution trap ISO in eastern hemisphere

Simulated boreal summer convectively coupled Kelvin-Rossby waves





Impact on Synoptic-Scale Wave Train (SWT) in WNP

Lau and Lau (1990) :

An alternative positive and 

negative vorticity wave train 

with

timescale: 2-8 days,

wavelength: 2500 km,

propagation: northwestward.



In the model, the 

NW-SE slanted 

precipitation 

anomalies in the 

monsoon regions 

forms 

due to emanation of 

the moist Rossby 

waves from the 

equatorial rainfall 

anomalies over the 

maritime continent.  

Drbohlav and Wang 2005



Interaction 

between moist 

Rossby wave 

and the 

vertical shear 

of the mean 

monsoon 

provides a 

mechanism 

for the 

formation of 

the slanted 

ISO rain band. 

Mean flows removed

Uniform SST

Only Monsoon vertical 

Shear included Drbohlav and Wang 2005



ECHAM Model: Vorticity leads convection anomalies

vertical velocity vorticity geopotential height

divergence specific humidity temperature

Jiang et al. 2003
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An atmospheric internal dynamic mechanism for northward propagation: monsoon easterly 
vertical shear provides a vorticity source, which, upon being twisted by the north-south varying 
vertical motion field associated with the Rossby waves, generates positive vorticity north of the 
convection, creating boundary layer moisture convergence that favor northward movement of the 
enhanced rainfall. 
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How easterly vertical shear pulls the RW Northward


