
DeltaRho
Divide & Recombine for Deep Analysis 

and Detailed Visualization



Data Science is multidisciplinary

● Data Science focuses on data analysis 

● Technical areas: 
○ statistical theory and models, 

○ machine learning and statistical methods, 

○ data visualization methods,

○ algorithms for these methods, 

○ computational environments for data analysis,

○ “Live” analyses judged by the subject matter findings, not the methodology and systems used 

(Cleveland 2001, 2005, 2014; Cleveland and Hafen 2014)











Weather and Climate data-science 
challenges● Massive model and sensor output

● Multiple spatial and temporal scales of Interests

● High-impact research and operation applications need data analysis
○ Analysis and Modeling of Big Data for Big Cities

○ Forecasting Extreme Event Impacts on Urban Food-Energy-Water Systems

○ Subseasonal to Seasonal (S2S) Forecasts

○ Stochastic Representation of Model Physics

○ Uncertainty quantification in Complex Models



Notable Public Data Initiatives in 
Geosciences● NASA Earthdata https://earthdata.nasa.gov/

● AWS https://aws.amazon.com/opendata/public-datasets/
○ Registry: https://registry.opendata.aws/

● Google Public Data https://www.google.com/publicdata/directory

● US government open data https://www.data.gov/

● Chicago City data https://data.cityofchicago.org/

● NCAR Research Data Archive https://rda.ucar.edu/

● Incorporated Research Institutions for Seismology (IRIS) https://www.iris.edu/hq/

● OneGeology http://www.onegeology.org/, part of ongoing Deep-time Digital Earth (DDE)

https://earthdata.nasa.gov/
https://aws.amazon.com/opendata/public-datasets/
https://registry.opendata.aws/
https://www.google.com/publicdata/directory
https://www.data.gov/
https://data.cityofchicago.org/
https://rda.ucar.edu/
https://www.iris.edu/hq/
http://www.onegeology.org/


Analyze and Visualize Large Complex 
Data in R

http://deltarho.org



DeltaRho is based on Divide and 
Recombine (D&R)



Hadoop provides a scalable back end to 
power the divide and recombine 
approach

Hadoop distributed file system (HDFS)

Parallel compute engine (Map/Reduce) and more

http://hadoop.apache.org



Current Capacity of DeltaRho at Purdue
● Access to analysis methods—thousands of methods of machine learning, statistics, and 

data visualization through R 

● Easy programming of analyses—R-Hadoop Integrated Programming Environment 

protects analysts from direct programming in Hadoop

● Bridge to other Apache software ecosystem for data analysis backended by Hadoop: Dask 

(Python) and Storm (realtime streaming)

● Frontend interface: Jupyter Notebook (internal current) and Purdue’s HubZero (external 

future, for example http://mygeohub.org)

● High computational performance—increase dramatically with data size and analytic 

computational complexity. 

● Deep analysis of the data—analysis of the detailed data at their finest granularity

http://mygeohub.org


Introduction to Hadoop

White, Tom, 2015, Hadoop: The Definitive Guide: 

Storage and Analysis at Internet Scale. 4th Ed., 

O’Reilly Media, 756pp.



What is Hadoop?

● The Apache Hadoop project (https://hadoop.apache.org/) develops open-source software 

for reliable, scalable, distributed computing.

● Apache Hadoop software library is a framework for storing data and running applications 

on clusters of commodity hardware
○ Rather than rely on hardware to deliver high-availability, the library is designed to detect and handle failures 

at the application layer, so delivering a highly-available service on top of a cluster of computers, each of 

which may be prone to failures.

○ Massive storage for any kind of data, enormous processing power and the ability to handle virtually limitless 

concurrent tasks or jobs.



Modules of Hadoop

● Hadoop Common: The common utilities that support the other Hadoop modules.

● Hadoop Distributed File System (HDFS): A distributed file system that provides high-

throughput access to application data.

● Hadoop YARN: A framework for job scheduling and cluster resource management.

● Hadoop MapReduce: A YARN-based system for parallel processing of large data sets.

● Hadoop Ozone: An object store for Hadoop.

● Hadoop Submarine: A machine learning engine for Hadoop.



Challenges of Big Data Storage and 
AnalysisChallenge: Although the storage capacities of hard drives (HD) have increased massively over 

the years, access speeds -- the rate at which data can be read from drives -- have not kept up.

● 1990 HD: 1370 MB storage, 4.4 MB/s transfer speed, 5 mins to read full disk

● 2010 HD: 1TB storage, 100 MB/s transfer speed, 2.5 hr to read full disk
○ Writing is even slower

Obvious Solution: Read from multiple disks at once



More issues

There is more to being able to read and write data in parallel or to form multiple disks:

Problem 1: Hardware failure

Solution:

● Common solution: replication: redundant copies of data

● RAID (Redundant Array of Independent Disks), Hadoop Distributed File System (HDFS)



More issues

Problem 2: Analysis tasks need to be able to combine the data in some way; data read from one 

disk may need to be combined with data from any of the other 99 disks

Solution:

● Hadoop’s MapReduce provides a programming model that abstracts the problem from 

disk reads and writes, transforming it into a computation over sets of keys and values



Hadoop’s solutions

● Hadoop provides a reliable, scalable platform for storage and 

analysis. 

● It runs on commodity hardware and is open source, so Hadoop is 

affordable.



Hadoop 1 vs. Hadoop 2

https://hortonworks.com/blog/office-hours-qa-on-yarn-in-hadoop-2/



Hadoop’s MapReduce enables query big 
data● The premise of MapReduce is that the entire dataset or at least a good portion of it can be 

processed for each query.

● MapReduce is a batch query processor, and the ability to run an ad hoc query against your 

whole dataset and get the results in a reasonable time is transformative.

● A batch processing system is not suitable for interactive analysis - you can’t run a query 

and get results back in a few seconds or less.

○ MapReduce is best for offline use



Beyond MapReduce

● Hadoop 2 provides different processing patterns with YARN (Yet Another Resource 

Negotiator)

● YARN is a cluster resource management system, which allows any distributed program 

(not just MapReduce) to run on data in a Hadoop cluster: Interactive, Iterative, 

Streaming,...



Comparison with SQL Database 
Management Systems
SQL: Relational Database, with ACID properties

● Atomicity requires a transaction to execute completely or not at all.

● Consistency requires that when a transaction has been committed, the data must conform 

to the database schema.

● Isolation requires that concurrent transactions execute separately from each other.

● Durability requires the ability to recover from an unexpected system failure or power 

outage to the last known state.

https://aws.amazon.com/sql/

https://aws.amazon.com/sql/


Hadoop uses key-value databases
NO-SQL: Flexibility, Scalability, High-performance, High-functional

● Flexibility: NoSQL databases generally provide flexible schemas that enable faster and more iterative development. 

The flexible data model makes NoSQL databases ideal for semi-structured and unstructured data.

● Scalability: NoSQL databases are generally designed to scale out by using distributed clusters of hardware instead 

of scaling up by adding expensive and robust servers. Some cloud providers handle these operations behind-the-

scenes as a fully managed service.

● High-performance: NoSQL database are optimized for specific data models (such as document, key-value, and 

graph) and access patterns that enable higher performance than trying to accomplish similar functionality with 

relational databases.

● Highly functional: NoSQL databases provide highly functional APIs and data types that are purposely built for each 

of their respective data models.

https://aws.amazon.com/nosql/

https://aws.amazon.com/nosql/


Comparison between Hadoop with Grid 
ComputingTraditional High Performance Computing and Grid Computing

● MPI: Message Passing Interface

● Distribute the work across a cluster of machines, which access a shared filesystem, hosted 

by a storage area network (SAN)

● Works well for predominantly compute-intensive jobs, problem with nodes needing to 

access large data volumes (100s of GB, for example); the network bandwidth is the 

bottleneck and compute nodes become idle

● MPI gives great control to programmers, good or bad



Hadoop

● Co-locate the data with the compute nodes, so data access is fast because it is local
○ Data locality, the heart of data processing in Hadoop

● Hadoop conserves network bandwidth by explicitly modeling network topology

● This arrangement does not preclude high-CPU analysis in Hadoop

● Hadoop programmers think in terms of data model (such as key-value pairs for 

MapReduce), while data flow remains implicit

● Hadoop’s “shared-nothing” architecture allows handling of partial failure



Hadoop 2 Architecture



Shared-Nothing architectures

● In distributed systems, this is an architecture where each node is completely independent 

of other nodes in the system. 

● There are no shared resources that can become bottlenecks. 

The lack of shared resources refers to 

● Lack of physical resources such as memory, disks, and CPUs
○ Instead of using centralized storage, Hadoop’s processing framework uses the distributed HDFS storage. 

● Lack of shared data
○ each node is processing a distinct subset of the data and there’s no need to manage access to shared data. 



Shared-Nothing architectures are very 
scalable● Because there are no shared resources, addition of nodes adds resources to the system and 

does not introduce further contention. 

These architectures are also fault-tolerant: 

● Each node is independent, so there are no single points of failure, and the system can 

quickly recover from a failure of an individual node. 



Hadoop2: Computation

Resource Manager(RM) node:

● Jobs are submitted to Resource 

Manager (asks for job ID, checks the 

output path ...)

● Applications Manager(AsM) -

manages running jobs in the cluster

● Scheduler - manages and enforces the 

resource scheduling policy in the 

cluster

NodeManager(NM) node:

● ApplicationMaster(AM) - A per-job 

master that manages the 

application’s life cycle jobs on the 

cluster

● Container, it is an Unix process which 

is assigned with specific amount of 

core and memory



Workflow



Workflow: Procedure of submitting a job

1. Client  ←→ Applications Manager in Resource Manager

2. Resource Manager(RM) ←→ Node Manager: finds an available container for running the 

ApplicationMaster

3. ApplicationMaster  ←→ ResourceManager: ask for containers for all map and reduce 

tasks.

4. ApplicationMaster  ←→ NodeManager: starts the containers and run JVMs



Simulating a MapReduce job



What is MapReduce?

● It is a computation engine in Hadoop ecosystem

● A programming model and an associated implementation for processing and generating 

large data sets with a parallel, distributed algorithm on a cluster 

● MapReduce programs are embarrassingly parallel, putting very large-scale data analysis 

into the hands of anyone with enough machines at their disposal

● Hadoop can run MapReduce programs written in various languages: Java, Ruby, Python, 

R,...



Example: Weather Data 

● National Climate Data Center Integrated Surface Data 
https://www1.ncdc.noaa.gov/pub/data/noaa

○ Hourly Surface Station Data Worldwide from 1901 to 2019 (Feb) 
https://www1.ncdc.noaa.gov/pub/data/noaa/readme.txt

○ Station Inventory https://www1.ncdc.noaa.gov/pub/data/noaa/isd-inventory.txt

https://www1.ncdc.noaa.gov/pub/data/noaa
https://www1.ncdc.noaa.gov/pub/data/noaa/readme.txt
https://www1.ncdc.noaa.gov/pub/data/noaa/isd-inventory.txt




Data files: https://www1.ncdc.noaa.gov/pub/data/noaa/1901/

Organized by weather station and year.

The whole dataset is a large number of relatively small files, but can be pre-processed into small 

number of relatively large files.

https://www1.ncdc.noaa.gov/pub/data/noaa/1901/


Surface hourly abbreviated format 
https://www1.ncdc.noaa.gov/pub/data/noaa/ish-abbreviated.txt

https://www1.ncdc.noaa.gov/pub/data/noaa/ish-abbreviated.txt


Find the maximum temperature



“Simulating” a MapReduce job 

● MapReduce works by breaking the processing into two phases: the map phase and the 

reduce phase. 

● Each phase has key-value pairs as input and output, the types of which may be chosen by 

the programmer. 

● The programmer also specifies two functions: the map function and the reduce function. 



3-step workflow
● Map: A map function is applied to each input key-value pair, which does some user-defined processing and 

emits new key-value pairs to intermediate storage to be processed by the reduce.

● Shuffle/Sort: The map output values are collected for each unique map output key and passed to a reduce 

function.

● Reduce: A reduce function is applied in parallel to all values corresponding to each unique map output key 

and emits output key-value pairs.



Map or Reduce?
● The input to the map phase is the raw weather data. 

○ each line in the dataset is a text value. 

○ These lines are presented to the map function as the key-value pairs

○ The key is the offset of the beginning of the line from the beginning of the file, but as we have no need for 

this, we can ignore it. 

○ The map function is also a good place to drop bad records



Map or Reduce?

This function extracts the year and the air temperature (indicated in bold text previously), and 

emits them as its output (the temperature values have been interpreted as integers).

Note these new key-value pairs.



Map or Reduce?

This process sorts and groups the key-value pairs by key. So, each year appears with a list of 

all its air temperature readings.



Map or Reduce?

This function iterates through the list and pick up the maximum reading: 



MapReduce workflow example:



MapReduce and D&R



D&R for Large Complex Data

Divide and Recombine approach

● Divide the data into subsets

● Apply statistical methods to 

each subset independently

● Recombine the results in a 

statistically valid way



RHIPE: R and Hadoop Integrated 
Programming Environment 
Backgroud

Hadoop is written in Java

R is used by most statisticians, with a vast number of analysis packages



What is RHIPE?

● RHIPE is the R and Hadoop Integrated Programming Environment

● Manages communication between the R user and Hadoop to carry out D&R data analysis

● Allows an analyst to run Hadoop MapReduce jobs wholly from within R.

● First developed by Saptarshi Guha as part of his PhD thesis in the Purdue Statistics 

Department



RHIPE Workflow

● User writes R code for D&R comupations

● R commands are passed to RHIPE R commands that communicate with Hadoop

● R objects are distributed by Hadoop across the nodes of the cluster

● Hadoop implements computations

● Outputs from D&R computations are written to HDFS as R objects

● Documentations: 

http://deltarho.org/docs-RHIPE/index.html

http://deltarho.org/docs-RHIPE/functionref.html

http://deltarho.org/docs-RHIPE/index.html
http://deltarho.org/docs-RHIPE/functionref.html


Programming MapReduce



Structure of a MapReduce Program

1. Map Expression: Mapper, a map function

Expression which will be evaluated for each map task

1. Reduce Expression: Reducer, a reduce function

Expression which will be evaluated for each reduce task

1. Execution function: some code to run a MapReduce job

Specifies all parameters needed for a MapReduce job, and triggers the MapReduce 

job in Rhipe if programmed with Rhipe



A map or a reduce function (a mapper or a reducer) contains following four formal type 

parameters specifying

1. Input keys

2. Input values

3. Output keys

4. Output values

In the reducer, the input keys and values match the output keys and values of the mapper



A MapReduce Job

- A unit of work that the client wants to be performed

- It is composed of

1. Input Data: a single file, a directory (all files in the directory), or a file pattern

2. MapReduce Program

3. Configuration Information



Data Flow of a MapReduce job

- Hadoop runs the MapReduce job by dividing it into tasks: map tasks and reduce tasks 

- The tasks are scheduled using YARN and run on nodes in the cluster. If a task fails, it will 

be automatically rescheduled to run on a different node. -

- Hadoop divides the input to a MapReduce job into fixed-size pieces called input splits, or 

just splits

- Hadoop creates one map task for each split, which runs the user-defined map function for 

each record in the split. 
- Map tasks write their output to the local disk, not to HDFS, because it’s considered intermediate/transient



Hadoop does its best to run the map task on a node where the input data resides in HDFS, 

because it doesn’t use valuable cluster bandwidth (data locality optimization). 

Data-local (a), rack-local (b), and off-rack (c) map tasks

Question: what’s the optimal split size?



- Reduce tasks don’t have the advantage of data locality

- the input to a single reduce task is normally the output from all mappers. 

- Therefore, the sorted map outputs have to be transferred across the network to the 

node where the reduce task is running, where they are merged and then passed to the 

user-defined reduce function. 

- The output of the reduce is normally stored in HDFS for reliability. 

. 








