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1). Challenges in sea ice forecasts

from operational CFS

• Model (CFSv2: GFS2007/MOM4)

1) Excessive solar radiation at surface

2) Unrealistic ocean-ice heat flux

• Initial conditions (CFSR)

1) Too thick sea ice thickness

2) Discontinuity in the time-series of sea ice extent

• Sea ice forecast from CFS

1) Weaker seasonal cycle

2) Large errors in predicted sea ice coverage
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1). Challenges to sea ice forecasts

from operational CFS
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Jul-Nov Bias 
Cloud amount

Jul-Nov Bias 
Surface downward 

solar radiation

Excessive surface downward solar radiation flux in CFSv2

 Excessive surface solar radiation flux in CFSv2 due to negative bias in cloud amount



1). Challenges to sea ice forecasts

from operational CFS
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Unrealistic initial sea ice thickness in CFSv2

• PIOMAS sea ice 

thickness is more 

realistic than CFSR

• PIOMAS sea ice 

volume trend is 

more consistent with 

ICESat observations 

during the 2000s.  



Sea ice thickness anomaly May 2017

CFSR PIOMAS

1). Challenges to sea ice forecasts

from operational CFS
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CFSR: Climate Forecast System Reanalysis

PIOMAS: Pan-arctic Ice/Ocean Modeling and Assimilation System



2). CPC experimental sea ice 

prediction system

• System used in 2015 – 2017 (CFSpp)
− Model (CFS with two changes in physics)

Enable stratus cloud and remove ocean-ice heat flux constraint

− Sea ice Initial conditions

PIOMAS sea ice thickness
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Observation Operational 

CFSv2

CFSv2 with

PIOMAS sea ice

PIOMAS sea ice 

&

modified physics

Zonal mean sea ice concentration (170-200E) 2011 sea ice area from March initial conditions

Operational 

CFSv2

Observation

CFSpp



2). CPC experimental sea ice 

prediction system

• New system Used since 2018
− Model (CFSm5)

• Atmospheric component: GFS2015 (T126/L64)

• Oceanic component: GFDL MOM5 (0.5X0.5/L40)

GFDL SIS

− Initial conditions

1) Atmosphere: Climate Forecast System Reanalysis (CFSR)

2) Ocean and sea ice: CPC Sea Ice initialization System (CSIS)
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• Model: MOM5

• Atmospheric forcing: CFSR

• Variables assimilated (as in PIOMAS):
- SST: NCEI or OISST

- Ice concentration: NASA Team

3). CPC Sea ice initialization 

system (CSIS)



3). CPC Sea ice initialization 

system (CSIS)
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4). Sea ice predictions

- Forecast configuration

1) Forecast model: CFSm5 (GFS/MOM5)

2) Initialization: CFSR (atmosphere) and CSIS (Ocean/sea ice)

3) Sea ice predictions

• Seasonal

− Forecast frequency: Monthly

− Initial dates: 21st-25th

− Target 9 months

− Hindcasts: Most recent 12 years

• Week 3-4

− Forecast frequency: Weekly

− Initial dates: Sunday

− Target 45 days

− Hindcasts: 2012-2018
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4). Sea ice predictions
- performance evaluation

13

e

e

ACAT

ACAC
HSS
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AC: Area of correct forecast

ACe: Area of expected correct forecast

AT: Area of total forecast grid boxes

(Sea ice exists if SIC > 15%)

Sea ice existence Heidke Skill Score (HSS) 

(Mar-Oct 2015-2018 forecasts)

• Overall improvements in CPC 

experimental system in 

predicting sea ice melt over 

CFSv2

• Forecasts for summer (Jul-Sep) 

sea ice melt in CFSv2 is not 

useful

• CPC experimental system has 

difficulties in predicting sea ice 

freeze-up.

Seasonal predictions



SIE ACC from seasonal predictions
(May initial conditions, 2006-2017)
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4). Sea ice predictions
- performance evaluation

Seasonal predictions
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Jul 2017 sea ice 

concentration anomalies 

May 2017 initial conditions 

4). Sea ice predictions
- performance evaluation

Seasonal predictions



4). Sea ice predictions
- performance evaluation
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Week-3/4 predictions

Arctic SIE ACC, 2012-2018

Melt season Freeze-up season



4). Sea ice predictions
- performance evaluation
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Week-3/4 predictions

Heidke Skill Score, 2012-2018

Melt season Freeze-up season
e
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HSS
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4). Sea ice predictions
- performance evaluation

Week-3/4 predictions

Week 4 (Jul 22-28) forecast from 20180701 

• CFSv2: Too much sea ice in Kara Sea, Laptev Sea, Hudson Bay, Baffin Bay

• CFSv2 and CFSm5: Too much sea in Beaufort Sea 



19

• Monthly mean ice extent

• Monthly mean sea ice concentration

• Probability of monthly mean sea ice

• First ice melt day (IMD) and ice freeze day (IFD)

5). CPC Sea ice forecast products

Seasonal Sea Ice prediction
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• Monthly mean ice extent
‒ Total area of grid boxes where monthly mean sea ice 

concentration is greater than 15%
‒ Ensemble mean and ensemble spread

5). CPC Sea ice forecast products

Seasonal Sea Ice prediction
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• Monthly mean sea ice concentration
‒ Ensemble mean and spread

Monthly mean sea ice concentration Monthly sea ice concentration spread

5). CPC Sea ice forecast products

Seasonal Sea Ice prediction
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• Probability of monthly mean sea ice
– Concentration greater than 15%

5). CPC Sea ice forecast products

Seasonal Sea Ice prediction
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• First ice melt day (IMD) and ice freeze day (IFD)
‒ Ensemble mean and spread

5). CPC Sea ice forecast products

Seasonal Sea Ice prediction



24

• First ice melt day (IMD) and ice freeze day (IFD)
‒ Ensemble mean and spread

5). CPC Sea ice forecast products

Seasonal Sea Ice prediction
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• Forecast Model
− CFSm5: GFS (T126,L64)

− MOM5 (0.5x0.5, L40)

• Initialization
− Sea ice: CSIS (CPC Sea ice 

Initialization System)

− Ocean: CSIS

− Atmos.: CFSR

• Forecast
− Target: Weeks 1-6 target

− Update: weekly

• Products
SIE: Sea ice extent

SIC: Sea ice concentration

IMD: Sea ice melt date

IFD: Sea ice freeze-up date

http://www.cpc.ncep.noaa.gov/produ

cts/people/wwang/seaice_wk34

SIE IMD

SIC IFD

5). CPC Sea ice forecast products

Weekly Sea Ice prediction

http://www.cpc.ncep.noaa.gov/products/people/wwang/seaice_wk34/


Part 1 Summary

• Substantial errors in the NCEP operational 

climate forecast system (CFSv2)

• Significant improvement in CPC experimental sea 

ice predictions for both week 3/4 and seasonal 

time scales

• CPC provides week 3/4 and seasonal sea ice 

forecast products routinely

• Additional work is required to further reduce 

model bias in winter season
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A forecast case assessment

Record-low Bering Sea sea ice extent in 2018 spring



Sea ice coverage on April 30, 2013-2018

Record-low Bering Sea sea ice extent 

in 2018 spring

https://climate.nasa.gov/news/2726/historic-low-sea-ice-in-the-bering-sea/



Bering Sea daily SIE

Record-low Bering Sea sea ice extent 

in 2018 spring



Record-low Bering Sea sea ice extent 

in 2018 spring

The report said the Bering Sea's record-low 2018 ice cover was 

due to two factors: 

(1) Warmer temperatures ice/albedo feedback

(2) Increased storms.

Warmer air and water temperatures have interacted with lower ice levels over the past four winters to create a 

feedback loop leading to even greater melting.

"Open water absorbs heat more than ice-covered water. Less sea ice means warmer ocean water, and warmer 

ocean water generally means less and thinner sea ice," the report said.

The winter of 2018 also saw more storms than usual in the region, meaning that when ice did form, it was broken 

up again.

According to The Washington Post, Bering Sea ice took a major hit during an arctic heatwave in February, when 

one third of it melted in a week.  While ice cover increased during March, it was reversed again by storms from the 

south beginning March 21, leading to a low-ice spring, the IARC report said.

"Communities need to prepare for more winters with low sea ice and stormy conditions. Although not every winter 

will be like this one, there will likely be similar winters in the future. Ice formation will likely remain low if warm 

water temperatures in the Bering Sea continue," the report concluded.
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Increased sensible 

heat flux  appeared to 

be the primary cause 

of the anomalous sea 

ice melt

CFSR MERRA2

Record-low Bering Sea sea ice extent 

in 2018 spring

Feb 2018 surface heat flux anomalies



CPC experimental prediction with CFSm5

Record-low Bering Sea sea ice extent 

in 2018 spring

• Reasonable 

prediction for the 

first month

• Unable to capture 

sub-monthly 

variations beyond 

one month.

• Observed 

variations were 

replicated in some 

members (e.g., 

ensemble 

member 9)

Initial date: 1 Jan 2018

NASA 

Team

Ensemble 

member 9

Ensemble 

mean

Bering Sea sea

ice extent



CPC experimental prediction with CFSm5

Record-low Bering Sea sea ice extent 

in 2018 spring

Feb 2018 850hPa Geopotential Height Anomalies

CFSR CFSm5 ensemble mean CFSm5 member 9

• CFSm5 capture the pattern in ensemble mean but with weaker amplitude

• Member 9 is similar to observed pattern with comparable amplitude



CPC experimental prediction with CFSm5

Record-low Bering Sea sea ice extent 

in 2018 spring

Feb 2018 sensible Heat Flux Anomalies

CFSR CFSm5 ensemble mean CFSm5 member 9

• CFSm5 capture the pattern in ensemble mean but with weaker amplitude

• Member 9 is similar to observed pattern with comparable amplitude



CPC experimental prediction with CFSm5

Record-low Bering Sea sea ice extent 

in 2018 spring

Feb 2018 10m Wind Anomalies

CFSR CFSm5 ensemble mean CFSm5 member 9

• CFSm5 capture the pattern in ensemble mean but with weaker amplitude

• Member 9 is similar to observed pattern with comparable amplitude



CPC experimental prediction with CFSm5

Record-low Bering Sea sea ice extent 

in 2018 spring

• CFSm5 is capable of reproducing observed patterns with weaker amplitude 

for February 2018

• Observed patterns were captured more realistically in certain ensemble 

members

• The CFSm5 forecasts suggest that the observed 2019 Bering Sea sea ice 

extent anomalies resulted from combination of low frequency (period > 1 

month) and high-frequency (period < 1 month) variability.



2. Sea ice impacts on 

lower latitudes

1) Northern mid-latitude 2-m temperature trend

2) Northern mid-latitude 2-m temperature variability
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Dec-Jan-Feb changes (2005-2014 minus 1981-1990)
T2m

SST SIC

• Cooling temperature trend in Eurasia; 
warming in Arctic region

• Global warming in SST
• Decreasing coverage in Arctic sea ice

Z200

Observations during the past a few decades

Sea ice 
concentration



Was the Eurasian cooling trend a result of sea ice decrease? 

Yes:
Honda et al. 2009 Liu et al. 2012 Mori et al. 201
Nakamura et al. 2014 Kug et al. 2015 Screen 2017
......

No:
Kumar et al. 2010 Screen et al. 2013 Gerber et al. 2014
Pelwitz et al. 2015 Li et al. 2015 Sun et al. 2016
McCusker et al. 2016 Blackport et al. (2019) ......



• Was the DJF Eurasian temperature trend a 
response to the observed sea ice and SST 
changes or a result of atmospheric internal 
variability? 

• Was the Eurasian cooling trend predictable in 
initialized seasonal predictions? 

Questions to address



1. Atmosphere-only model simulations forced with 
specified 10-year mean SIC and SST of 1981-1990 
and 2005-2014

Differences between simulations are taken as the atmospheric 
response to changes in SST or SIC, or SST and SIC

2. Coupled-model initialized seasonal predictions for 
1982-1990 and 2005-2013

Differences between the two periods are considered as the 
impacts of SST and SIC, as well as atmospheric initial conditions

Approach



1. Atmosphere-only model 
NCEP CFSv2: NCEP CFSv2 atmospheric component GFS

2. Coupled  models (NMME - North American Multi-Model Ensemble)
• CFSv2: NCEP GFS/ GFDL MOM4

• CMC1: Third Generation Canadian Coupled Global Climate Model

• CMC2: Fourth Generation Canadian Coupled Global Climate Model

• NASA: Goddard Earth Observing System version 5 (GEOS5)

• CCSM: The NCAR Community Climate System Model (CCSM4)

• GFDL: Geophysical Fluid Dynamics Laboratory 

Models



Atmosphere-only simulations - impacts of
• Sea ice
• SST
• Sea ice + SST



• Surface conditions (Hurrell et al., 2008)

‒ SST1: 1981-1990 average SST
‒ ICE1: 1981-1990 average sea ice concentration
‒ SST2: 2005-2014 average SST
‒ ICE2: 2005-2014 average sea ice concentration

• Simulations (100 years with repeating SST and ice)
‒ SST1ICE1
‒ SST2ICE1
‒ SST1ICE2
‒ SST2ICE2

Simulations (CFSv2 Atmosphere-only)



• Mean impact of SST, ICE, SST+ICE (100-year average)

• Differences in 10-year average between simulations

‒ 100 combinations of 10-year average differences

‒ Distribution of 10-year-average differences
‒ Extremeness of 10-year-average differencesd

Analysis

SST1ICE1

SST2ICE1

ICE SST1ICE2

SST2ICE2

Control simulation

Perturbed simulations



100-year mean response
DJF T2m (shading) and Z200 (contour)

ERA-I

Simulation
SST + ICE

(SST2ICE2 – SST1ICE1)

SST 
(SST2ICE2 – SST1ICE1)

ICE
(SST2ICE2 – SST1ICE1)

Observation

• ICE perturbation: Large Arctic warming; very weak warming in lower latitudes
• SST perturbation: Weaker but uniform warming over the globe
• SST+ICE perturbations: Large Arctic warming ; weaker warming at lower latitudes.

No Eurasian cooling in the mean response in all perturbed simulations

-0.27Eurasian average: 0.72 0.54 0.27



Distribution of 10-year-mean temperature change over the Eurasian domain
(100 combinations of differences relative to SST1ICE1)

• NO perturbation: Normal distribution
• Perturbations: (1) Positive mean shift.

(2) Increased probability of warm extremes
(3) Reduced probability of cold extremes

SST+ICE ICE

SST

0.27±0.50

0.54±0.490±0.46

0.72±0.50

Control



Extreme temperature differences

• Each panel is average 
of 10 coldest Eurasian 
combinations.

• Cold extremes can be 
simulated in each of 
the simulations.

• Warmer Arctic with 
ice perturbation.

• Warmer open ocean 
with SST perturbation.

SST+ICE

ICESST

Control



Relationships between Arctic 
temperature Index and SAT over NH

ART2

ART1:  SAT Barents-Kara Sea 
(30E-70E, 70N-80N)

ART1

ERA-I

ART1

Model

CFSv2 atmosphere-only runs

• Observed pattern 
correlation can be well 
reproduced with constant 
sea ice and SST

• "Warm Arctic – cold 
continent" pattern does 
not necessarily indicate 
the impact of Arctic sea ice

(Courtesy Kug et al. 2015)



Coupled predictions - impacts of
• Sea ice + SST + Atmospheric ICs
• Forecast lead time dependence



• Initial conditions: Climate Forecast System reanalysis (CFSR)

• Ensemble size: 4

• Initial time: Beginning of each month

• Target season: Dec-Jan-Feb (reconstructed from each month at same lead time)

• Forecast history: 1982-2013

• Analysis: (2005-2013 average)       (1982-1990 average)

Coupled predictions (CFSv2)

Dec Jan FebNovOct

2-mpnth lead

1-mpnth lead

0-mpnth lead



DJF SIC difference between 2005-2013 and 1982-1990

• Overall SIC decrease in NCEP CFSR, except Bering Sea and Western Greenland Sea
• CFSv2 captured the observed SIC decrease at 0, 1, & 2 month lead

CFSR
CFSv2 
0-mon lead

CFSv2 
2-mon lead

CFSv2 
1-mon lead



DJF SST difference between 2005-2013 and 1982-1990

• Overall warming in NCEP CFSR, except Bering Sea areas
• CFSv2 captured observed SST warming at 0, 1, & 2 month lead

CFSv2 
0-mon lead

CFSR

CFSv2 
2-mon lead

CFSv2 
1-mon lead



CFSR
CFSv2 
0-mon lead

CFSv2 
2-mon lead

CFSv2 
1-mon lead

DJF T2m difference between 2005-2013 and 1982-1990

• Observation: Cooling over Eurasia and Bering Sea areas; Overall warming
• Forecast: Weak Eurasian cooling at 0-m lead, disappearing at 1-m and 2-m lead



Coupled prediction (NMME)

• Models: CFSv2, CMC1, CMC2, NASA, CCSM4, GFDL

• Initial conditions: Respective assimilation systems

• Ensemble size: Different among models (4 to 10)

• Initial time: Beginning of each month

• Target season: Dec-Jan-Feb (reconstructed from each month at same lead time)

• Forecast history: 1982-2013 (http://www.cpc.ncep.noaa.gov/products/NMME/data.html)

• Analysis: 2005-2013 average minus 1982-1990 average



DJF T2m change (2005-2013 minus 1982-1990)
0-month lead 

• Individual models captured Eurasian cooling to varying degrees
• Weak Eurasian cooling signal in NMME mean. (More realistic cooling in Bering Sea)



• Eurasian cooling not present in most models
• No Eurasian cooling signal in NMME average

DJF T2m change (2005-2013 minus 1982-1990)
1-month lead 



DJF T2m change (2005-2013 minus 1982-1990)
2-month lead 

• No Eurasian cooling signal in individual models
• No Eurasian cooling signal in NMME average



Part 2.1 Summary
• Atmosphere-only simulations show a mean warming 

response over Eurasia due to SST changes but little 
response to changes to sea ice.

• Atmosphere-only individual runs simulate cooler 
periods over Eurasia.

• These results suggest that the internal variability is the 
primary cause of the Eurasian cooling in the CFSv2.

• The Eurasian cooling is predictable only in month one 
in the current seasonal climate prediction systems.



2. Sea ice impacts on 

lower latitudes

1) Northern mid-latitude 2-m temperature trend

2) Northern mid-latitude 2-m temperature variability
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Does the loss of Arctic sea ice result in more 
weather extremes? 

Yes: Francis and Vavrus (2012, 2015) 

• Sea ice loss 
•  Reduced the north-south temperature gradient 
• Weakened the zonal jet stream 
•  Greater likelihood of extreme events

No: Screen (2014), Screen et al. (2015), Blackport and Kushner (2016; 2017)

• Sea ice loss 
•  Decreased temperature gradients
•  Reduced temperature variability
•  Decrease of likelihood of North American cold extremes



• 1) Can the AMIP simulations represent the 
observed changes in the variability of northern 
mid-latitude temperatures?  

• 2) How is the overall intraseasonal temperature 
anomaly distribution impacted due to the 
different forcings?  

Questions to address in this analysis



• Surface conditions (Hurrell et al., 2008)

‒ SST1: 1981-1990 average SST
‒ ICE1: 1981-1990 average sea ice concentration
‒ SST2: 2005-2014 average SST
‒ ICE2: 2005-2014 average sea ice concentration

• Simulations (100 years with repeating SST and ice)
‒ SST1ICE1
‒ SST2ICE1
‒ SST1ICE2
‒ SST2ICE2

Simulations (CFSv2 Atmosphere-only)



T2m Intraseasonal standard deviation (K)
2005-2014 minus 1981-1990 

CFSR Model: SST+ICE forcing

Model: SST forcing Model: ICE forcing

• Significant decrease in intraseasonal variability in CFSR   
• Model can reproduce observed pattern of variability change
• The change intraseasonal variability is largely due to sea ice loss



Change in T2m extreme (top/bottom 10%) amplitude

2005-2014 minus 1981-1990 

• Decease in both cold and warm extreme amplitude in CFSR   
• These features are captured in the model when sea ice change is included

Eurasia North America



Change T2m extreme frequency

2005-2014 minus 1981-1990 

• Decrease (increase) in frequency of cold and warm extremes (non-extremes) in CFSR, except 
for Eurasian warm extreme

• These features are captured in the model when sea ice change is included

Eurasia North America



Part 2.2 Summary

• Observational reanalysis (CFSR) indicated a decrease in 
intraseasonal T2m variability, reduced amplitude and 
frequency of T2m extremes

• Model simulations showed that these features are 
related to the loss of Arctic sea ice
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