Experiences of Hydrological Frequency Analysis in Taiwan - Coping with Extraordinary Extremes and Climate Change

Prof. Ke-Sheng Cheng Department of Bioenvironmental Systems Engineering, National Taiwan University

Outline

- Introduction
- Improving accuracy of frequency analysis
 - Presence of outliers (extraordinary rainfall extremes)
 - Spatial correlation (non-Gaussian random field simulation)
- Frequency analysis of multi-site rainfall extremes

Introduction

Frequent occurrences of disasters induced by heavy rainfalls in Taiwan

- Landslides
- Debris flows
- Flooding and urban inundation
- Increasing occurrences of rainfall extremes (some of them are record breaking) in recent years
- Almost all of the long-duration rainfall extremes (longer than 12 hours) were produced by typhoons.

Examples of annual max events in Taiwan

Design durations	1965-year										
Duration(hrs)*	1	2	3	4	6	12	18	24	48	72	
Hosoliau	9/5	8/18	8/18	8/18	8/18	8/18	8/18	8/18	8/18	8/18	
Wutuh	6/11	8/21	9/6	9/6	9/6	9/6	8/18	8/18	8/18	8/18	
1969-year											
Duration(hrs)*	1	2	3	4	6	12	18	24	48	72	
Hosoliau	5/14	5/14	5/14	5/14	9/26	9/26	9/9	9/9	9/9	9/9	
Wutuh	9/21	9/8	9/8	9/8	9/8	9/8	9/8	9/8	9/8	9/8	
1974-year											
Duration(hrs)*	1	2	3	4	6	12	18	24	48	72	
Hosoliau	9/27	9/27	10/11	10/11	10/11	10/11	10/11	10/11	10/11	10/11	
Wutuh	9/15	9/15	10/11	10/11	9/15	10/11	10/11	10/11	10/11	10/11	

2016/1/14

RSLAB-NT

Laboratory for Remote Sensing Hydrology and Spatial Modeling, Dept of Bioenvironmental Systems Engineering, National Taiwan Univ.

1983-year										
Duration(hrs)*	1	2	3	4	6	12	18	24	48	72
Hosoliau	5/23	5/23	5/23	5/23	5/23	10/10	10/10	10/10	10/10	10/10
Wutuh	10/1	10/1	6/3	6/3	6/3	10/1	10/1	10/1	10/1	10/1
1987-year										
Duration(hrs)*	1	2	3	4	6	12	18	24	48	72
Hosoliau	7/26	10/22	10/22	10/22	10/22	10/22	10/22	10/22	10/22	10/22
Wutuh	10/22	7/26	10/22	10/22	10/22	10/22	10/22	10/22	10/22	10/22
1994-year										
Duration(hrs)*	1	2	3	4	6	12	18	24	48	72
Hosoliau	6/18	6/18	6/18	6/18	6/18	10/9	10/9	10/9	10/9	10/9
Wutuh	6/18	6/18	6/18	9/12	9/12	9/12	9/12	9/12	9/12	9/12

2016/1/14

RSLAB-NT

Laboratory for Remote Sensing Hydrology and Spatial Modeling, Dept of Bioenvironmental Systems Engineering, National Taiwan Univ.

19840624	<u>WYNNE魏恩</u>	26	7	0.269231
19850626	-	28	6	0.214286
19860919	<u>ABBY艾貝</u>	28	11	0.392857
19870727	<u>ALEX或力士</u>	28	11	0.392857
19880813	-	18	10	0.555556
19890912	<u>SARAH莎拉</u>	25	20	0.8
19900623	OFELIA歐菲莉	28	16	0.571429
19910622	-	26	8	0.307692
19920830	POLLY 寶莉	27	18	0.666667
19930912	ABEREIÓ	20	10	0.5
19940803	<u>CAITLIN凱特琳</u>	28	19	0.678571
19950608	DEANNA荻安娜	28	13	0.464286
19960731	<u>HERB智伯</u>	28	21	0.75
19970828	AMBER安迫	26	13	0.5
19980804	<u>OTTO興托</u>	27	14	0.518519
19990811	-	27	6	0.222222
20000822	<u>BILIS碧利斯</u>	27	17	0.62963
20010917	<u>NARI納莉</u>	27	13	0.481481
20020805	-	28	12	0.428571
20030606	-	28	13	0.464286
20040702	<u>MINDULLE</u> 敏督利	28	24	0.857143
20050718	<u>HAITANG海棠</u>	28	17	0.607143
20060609	-	28	19	0.678571
20071006	<u>KROSA</u> 柯羅莎	28	9	0.321429
20080717	<u>KALMAEGI卡玫基</u>	28	18	0.642857
20090808	<more amor<br="" amore="">Amore Amore Amo</more>	27	26 🔿	0.962963
20100919	FANAPI 月周比	27	18	0.666667
2016/1/14	4 Laboratory for Rem	ote Sensing	Hydrology	and Spatial M

Proportion of rainfall stations observing annual max rainfalls.

6

RSLAB-I

odeling, Dept of Bioenvironmental Systems Engineering, National Taiwan Univ.

- A large number of rain gauges maintained by CWB and WRA. Some of them have record length longer than 50 years. Most of them have less than 30 years record length .
- Design rainfalls play a key role in studies related to climate change and disaster mitigation.
- Problems in rainfall frequency analysis
 - Short record length (less than 30 years) (small sample size)
 - Record breaking rainfall extremes (presence of extreme outliers)
 - Typhoon Morakot

Dept of Bioenvironmental Systems Engineering, NTU

• Typhoon Morakot (2009)

- Catastrophic storm rainfalls (or extraordinary rainfalls) often are considered as extreme outliers. Whether or not such rainfalls should be included in site-specific frequency analysis is disputable.
 - 24-hr annual max. rainfalls (Morakot) of 2009
 - 甲仙 1077 mm
 - 泰武 1747 mm
 - 大湖山 1329 mm
 - 阿禮 **1237 mm**

RSLAB-

Lab for Remote Sensing Hydrology and Spatial Modeling, Dept. of Bioenvironmental Systems Eng., NTU

Frequency analysis of 24-hr annual maximum rainfalls (AMR) at Jia-Sien station using 50 years of historical data

- 1040mm/24 hours (by Morakot) excluding
 Morakot 901 years return period
- Return period inclusive of Morakot 171 years

The same amount (1040mm/24 hours) was found to be associated with a return period of **more than 2000 years** by another study which used 25 years of annual maximum rainfalls.

Morakot rainfalls were not included in the frequency analysis.

	表 4.1 莫拉克颱風高屏溪各雨量站不同降雨延時降雨量頻率分析結果表										
	雨量站		24	4 小時	48	3 小時	72小時			恣封日存	
流域		鄉鎮名稱	Rainfall (mm)	Return period	Rainfall (mm)	Return period	Rainfall (mm)	Return period	Total Rainfall	Record length	
	屏束(5)	屏東縣屏東市	667.0	141	886.0	124	947.0	159	959.0	38	
	美濃(2)	高雄縣美濃鎮	507.0	>2000	749.0	>2000	828.0	>2000	871.0	19	
	屏東	屏東縣屏東市	666.0	140	906.0	143	974.5	197	990.0	38	
	溪埔	高雄縣大樹鄉	729.5	271	994.5	265	1057.5	378	1076.5	38	
	旗山	高雄縣旗山鎮	621.0	>2000	813.0	>2000	854.5	>2000	881.0	15	
	尾寮山	屏東縣三他門	1414.5	>2000	2215.5	>2000	2564.0	>2000	2701.0	21	
dr 12 14	甲仙	高雄縣甲仙鄉	1077.5	>2000	1601.0	>2000	1856.0	>2000	1916.0	25	
高屏溪	古夏	屏東縣三地門郷	683.5	>2000	946.0	>2000	1061.5	>2000	1127.0	25	
	美濃	高雄縣美濃鎮	633.5	>2000	878	>2000	955.5	>2000	989.5	15	
	里港	屏東縣里港鄉	710.5	>2000	955.5	>2000	1018	>2000	1039.5	15	
	上德文	屏東縣三地門鄉	1185.5	>2000	1968.0	>2000	2194.5	>2000	2255.0	25	
	新圍	屏東縣鹽埔鄉	578.0	148	757.5	>2000	806.5	565	830.5	25	
	月眉	高雄縣杉林鄉	744.0	>2000	1081.0	>2000	1205.0	>2000	1246.5	19	
	吉東	高雄縣美濃鎮	547.5	>2000	728.0	>2000	789.0	>2000	820.5	19	
	大津	高雄縣六龜鄉	738.5	>2000	1072.0	>2000	1241.0	>2000	1314.0	21	

資料來源:「莫拉克颱風暴雨量及洪流量分析」,經濟部水利署,民國98年9月。原資料尚有濁水溪、北 港溪、朴子溪、八掌溪、急水溪、曾文溪、鹽水溪、二仁溪、東港溪、四重溪、林邊溪、知本 溪等各雨量站不同降雨延時降雨量頻率分析結果。

Lab for Remote Sensing Hydrology and Spatial Modeling,

1/14/2016

RSLAB-

Dept. of Bioenvironmental Systems Eng., NTU

Concurrent occurrences of extraordinary rainfalls at different rain gauges

- Several stations had 24-hr rainfalls exceeding 100-yr return period.
- Site-specific events of 100-yr return period.
- What is the return period of the event of multi-site 100-yr return period?
 - (100)^4 = 100,000,000 years (4 sites), assuming independence
- Redefining extreme events
 - multi-site extreme events w.r.t. specified durations and rainfall thresholds
 - Spatial covariation of rainfall extremes

Dept of Bioenvironmental Systems Engineering, NTU

Spatial covariation of rainfall extremes

 By using site-specific annual maximum rainfall series for frequency analysis implies a significant loss of valuable information.

24-hr Event Maximum Rainfalls

			Stati	ion A		Station B						
Year	Event-	Event-	Event-	Event-								
	1	2	3	4	5	6	1	2	3	4	5	6
1	160	355	164	<mark>387</mark>	173	<mark>518</mark>	383	693	142	<mark>1242</mark>	321	<mark>1493</mark>
2	293	<mark>410</mark>	383	<mark>537</mark>			535	505	<mark>621</mark>	<mark>1009</mark>		
3	<mark>390</mark>	358	313	384	<mark>412</mark>		<mark>696</mark>	<mark>704</mark>	289	548	463	
4	168	239	<mark>359</mark>	<mark>471</mark>	344		683	<mark>858</mark>	<mark>1219</mark>	47	400	
5	<mark>617</mark>	<mark>356</mark>	186				<mark>408</mark>	<mark>560</mark>	230			
6	<mark>567</mark>	<mark>280</mark>	180	231			<mark>347</mark>	<mark>800</mark>	111	171		

Probability distribution of Annual Maximum Rainfalls (Small sample size)

Dept of Bioenvironmental Systems Engineering, NTU

Probability distribution of Event-Maximum Rainfalls (Large sample size)

2016/1/14

Dept of Bioenvironmental Systems Engineering, NTU

Coping with outliers

- Regional Frequency Analysis
- Stochastic simulation of multi-site event-maximum rainfalls

Fundamental concept of regional frequency analysis

- For areas with short record length or without rainfall or flow measurements, hydrological frequency analysis needs to be conducted using data from sites of similar hydrological characteristics.
- Data observed at different sites within a *"homogeneous region"* can be combined and used in *regional* frequency analysis.

General procedures of regional frequency analysis (Hosking and Wallis, 1997)

1. Data screening

1/14/2016

- Correctness check
- Data should be stationary over time.
- 2. Identifying homogeneous regions
 - A set of characteristic variables should be chosen and used for delineation of homogeneous regions.
 - Characteristic variables may include geographic and hydrological variables.
 - Homogeneous regions are often determined by cluster analysis.

3. Choice of an appropriate regional frequency distribution

- GOF test using rescaled samples from different sites within the same homogeneous region.
- The chosen distribution not only should fit the data well but also yield quantile estimates that are robust to physically plausible deviations of the true frequency distribution from the chosen frequency distribution.

4. Parameter estimation of the regional frequency distribution

- Estimating parameters of the site-specific frequency distribution
- Estimating parameters of the regional frequency distribution using record-length weighted average.
- 5. Calculating various quantiles of the hydrological variable under investigation.

Lab for Remote Sensing Hydrology and Spatial Modeling, Dept. of Bioenvironmental Systems Eng., NTU

An experimental stochastic simulation

- We generated 7 random samples (sample size n = 40) of a gamma distribution with mean=600 and std dev =346.
- The data set is considered equivalent to annual max rainfalls (record length = 40) at 7 stations.
- Outliers were detected in four of the seven series.
- Return period of the maximum value of each individual AMR series was calculated.

Max value in AMR 1797.758 1159.976 1567.84 2066.767 1326.539 1288.869 1624.943

08/13/2012

2012 AOGS Conference

Study area and rainfall stations

06/25/2013

2013 AOGS Conference

Event-maximum rainfalls of various design durations

- Event-max 1, 2, 6, 12, 18, 24, 48, 72-hr typhoon rainfalls at individual sites.
- Approximately 120 events
- Complete series

Delineation of homogeneous regions (K-mean cluster analysis)

- 24 classification features (8 design durations x 3 parameters – mean, std dev, skewness)
 - Normalization of individual features
- Two homogeneous regions (25 stations)

Regional frequency analysis Delineating homogeneous regions

•

2012 AOGS Conference

08/13/2012

2012 AOGS Conference

27

Hot spots for occurrences of extreme rainfalls

1992 – 2010 Number of extreme typhoon events

08/13/2012

2012 AOGS Conference

Rescaled variables for regional frequency analysis – Frequency factors

 $K_{ijk} = \frac{x_{ijk} - \mu_{ik}}{\sigma_{ik}}$

Goodness-of-fit test and parameters estimation

- L-moment ratio diagrams (LMRD) for goodness-of-fit test
 - * Pearson Type 3 distribution
- Parameters estimation
 - * Method of L-moments
 - * Record-length-weighted regional parameters

L-moment-ratio diagram GOF test

31

Covariance structure of the random field

- Covariance matrices are semi-positive definite.
- Experimental covariance matrices often do not satisfy the semi-positive definite condition.
- Modeling the covariance structure of frequency factors (event-max rainfalls) by variogram modeling.

Relationship between semivariogram and covariance function

$$\gamma(h) = \frac{1}{2} Var[Z(x+h) - Z(x)]$$
$$= C(0) - C(h)$$

$$C(x_i, x_j) = C(h)$$

sill = C(0) = 1

Semi-variogram modeling (24-hr EMR)

Semi-variograms of EMRs of other durations

Stochastic Simulation of Multi-site Event-Max Rainfalls

- Pearson type III (Non-Gaussian) random field simulation
- Covariance Transformation Approach
 - Covariance matrix of multivariate PT3 distribution
 - Covariance matrix of multivariate standard Gaussian distribution
 - Multivariate Gaussian simulation
 - Transforming simulated multivariate Gaussian realizations to PT3 realizations

 $\rho_{XY} \sim \rho_{UV}$ Conversion $\rho_{XY} \approx \left(A_X A_Y - 3A_X C_Y - 3C_X A_Y + 9C_X C_Y\right)\rho_{UV}$ $+2B_{v}B_{v}\rho_{uv}^{2}+6C_{v}C_{v}\rho_{uv}^{3}$ $A_X = 1 + \left(\frac{\gamma_X}{6}\right)^4 \qquad B_X = \frac{\gamma_X}{6} - \left(\frac{\gamma_X}{6}\right)^3 \qquad C_X = \frac{1}{3} \left(\frac{\gamma_X}{6}\right)^2$ $A_{Y} = 1 + \left(\frac{\gamma_{Y}}{6}\right)^{4} \qquad B_{Y} = \frac{\gamma_{Y}}{6} - \left(\frac{\gamma_{Y}}{6}\right)^{3} \qquad C_{Y} = \frac{1}{3} \left(\frac{\gamma_{Y}}{6}\right)^{2}$

1/14/2016

- Each simulation run generated one sample of t-hr multi-site event maximum rainfalls.
- Simulated samples preserved the spatial covariation of multi-site EMRs as well as the marginal distributions.
- 10,000 samples were generated.

2016/1/14

- Multi-site t-hr EMRs of 10,000 typhoon events.
- The number of typhoons vary from one year to another.
 - Annual count of typhoons is a random variable.

Dept of Bioenvironmental Systems Engineering, NTU

Determination of t-hr rainfall of T-yr return period

- Average number of typhoons per year, m = 2.43
- Return period, T=100 years
- Exceedance probability of the event-max rainfalls, $p_E=1/(100*2.43)$

Return Period, T = 200yr Duration, t = 24hr **EMR AMR**

4000

3500

3000

■ 2500

	24hr雨量(mm)	24hr重現期(年)	48hr雨量(mm)	48hr重現期(年)	72hr雨量(mm)	72hr重現期(年)
北港(2)	358	11	433	11	460	12
大埔	720	53	921	57	1069	118
沙坑	607	32	759	31	888	52
中坑(3)	497	24	636	26	744	42
溪口(3)	324	15	403	16	450	24
六漢	791	43	1024	55	1122	59
木柵	778	102	1037	54	1188	80
阿蓮(2)	630	41	868	42	924	41
旗山(4)	519	17	760	23	819	22
美濃(2)	338	4	509	6	569	6
新豐	908	63	1179	51	1195	36
屏東(5)	676	40	878	45	938	45
南和	614	15	988	39	1100	62
嘉義	526	22	646	17	697	24
台南	535	61	709	53	736	42
高雄	538	40	755	57	801	53
恆春	528	27	715	34	730	28
關子嶺(2)	1098	92	1490	126	1683	221
甲仙(2)	1040	65	1614	177	1915	204
紹家	818	110	1176	141	1333	130
三地門	825	18	1109	25	1235	29
大湖山	1329	48	1958	89	2533	306
樟腦寮(2)	868	22	1395	55	1846	141
泰武(1)	1747	47	2938	121	3417	171
阿禮	1237	23	1908	38	2335	66

甲仙(2)站 IDF Curve

44

Estimating return period of multisite Morakot rainfall extremes

- Four rain gauges within the Kaoping River Basin recorded 24-hr rainfalls close to 1,000mm (908, 1040, 825, 1237 mm).
- Define a multi-site extreme event
 - over 1,000 mm 24-hr rainfalls at all four sites
 - Among the 10,000 simulated events, only 8 events satisfied the above requirement.
 - Average number of typhoons per year, m=2.43
 - Multi-site extreme event return period T = 514 years.

Dept of Bioenvironmental Systems Engineering, NTU

Further look at the simulation results

- Preserving the spatial pattern of rainfall extremes

2016/1/14

Dept of Bioenvironmental Systems Engineering, NTU

Type A

同時發生超過100年重現期的最大24小時降雨之測站散佈圖

48

Туре В

同時發生超過100年重現期的最大24小時降雨之測站散佈圖

50

Type C

同時發生超過100年重現期的最大24小時降雨之測站散佈圖

同時發生超過100年重現期的最大24小時降雨之測站散佈圖

Type D

同時發生超過100年重現期的最大24小時降雨之測站散佈圖

Summary

- We developed a stochastic approach for simulation of multi-site event-max rainfalls to cope with the problems of outliers and short record length in hydrological frequency analysis.
- By increasing the sample size and considering the spatial covariation of EMRs, the return periods of site-specific and multi-site rainfall extremes can be better estimated.

Rationale of BVG simulation using frequency factor

- From the view point of random number generation, the frequency factor can be considered as a random variable K, and K_τ is a value of K with exceedence probability 1/T.
- Frequency factor of the Pearson type III distribution can be approximated by

Standard
normal
deviate
$$K_T \approx z + (z^2 - 1)\frac{\gamma_X}{6} + \frac{1}{3}(z^3 - 6z)\left(\frac{\gamma_X}{6}\right)^2$$

 $-(z^2 - 1)\left(\frac{\gamma_X}{6}\right)^3 + z\left(\frac{\gamma_X}{6}\right)^4 - \frac{1}{3}\left(\frac{\gamma_X}{6}\right)^5$ [A]
Laboratory for Remote Sensing Hydrology and Spatial Modeling,

Dept of Bioenvironmental Systems Engineering, National Taiwan Univ.

General equation for hydrological frequency analysis

$$X_T = \mu_X + K_T \sigma_X$$

Given μ_X , σ_X and γ_X , if we can generate a set of random numbers of *K*, say k_1, k_2, \dots, k_n , then a random sample of *X*, say x_1, x_2, \dots, x_n , can be obtained by $x_i = \mu_X + k_i \sigma_X$. Note that each k_i , $i = 1, 2, \dots n$, corresponds to its own exceedence probability $1/T_i$.

1/14/2016

Laboratory for Remote Sensing Hydrology and Spatial Modeling, Dept of Bioenvironmental Systems Engineering, National Taiwan Univ.

57

 The gamma distribution is a special case of the Pearson type III distribution with a zero location parameter. Therefore, it seems plausible to generate random samples of a bivariate gamma distribution based on two jointly distributed frequency factors.

$$K_{T} \approx z + (z^{2} - 1)\frac{\gamma_{X}}{6} + \frac{1}{3}(z^{3} - 6z)\left(\frac{\gamma_{X}}{6}\right)^{2} - (z^{2} - 1)\left(\frac{\gamma_{X}}{6}\right)^{3} + z\left(\frac{\gamma_{X}}{6}\right)^{4} - \frac{1}{3}\left(\frac{\gamma_{X}}{6}\right)^{5}$$
[A]

1/14/2016

Gamma density

$$f_X(x;\alpha,\beta) = \frac{1}{\alpha\Gamma(\beta)} \left(\frac{x}{\alpha}\right)^{\beta-1} e^{-x/\alpha}, \quad 0 \le x < +\infty$$
$$\alpha = \frac{\sigma}{\sqrt{\beta}} > 0 \qquad \beta = \left(\frac{2}{\gamma}\right)^2 > 0 \qquad \mu = \alpha\beta = \sigma\sqrt{\beta} > 0$$

 μ , σ , and γ are the mean, standard deviation, and skewness coefficient of X (or Y), respectively, and α and β are respectively the scale and shape parameters of the gamma density. $\sigma = \frac{\mu\gamma}{\sigma}$

1/14/2016

$K_T \approx z + \left(z^2 - 1\right)\frac{\gamma_X}{6} + \frac{1}{3}\left(z^3 - 6z\left(\frac{\gamma_X}{6}\right)^2 - \left(z^2 - 1\right)\left(\frac{\gamma_X}{6}\right)^3 + z\left(\frac{\gamma_X}{6}\right)^4 - \frac{1}{3}\left(\frac{\gamma_X}{6}\right)^5$

- Assume two gamma random variables X and Y are jointly distributed.
- The two random variables are respectively associated with their frequency factors K_x and K_y.
- Equation (A) indicates that the frequency factor K_x of a random variable X with gamma density is approximated by a function of the standard normal deviate and the coefficient of skewness of the gamma density.

1/14/2016

$K_{T} \approx z + \left(z^{2} - 1\right)\frac{\gamma_{X}}{6} + \frac{1}{3}\left(z^{3} - 6z\right)\left(\frac{\gamma_{X}}{6}\right)^{2} - \left(z^{2} - 1\right)\left(\frac{\gamma_{X}}{6}\right)^{3} + z\left(\frac{\gamma_{X}}{6}\right)^{4} - \frac{1}{3}\left(\frac{\gamma_{X}}{6}\right)^{5}$

Simulation of the frequency factor K_X can be achieved by generating a random sample of the standard normal deviate U, say u_1, u_2, \dots, u_n , and then utilizing Eq. (A) to

obtain $k_{x_1}, k_{x_2}, \dots, k_{x_n}$ from u_1, u_2, \dots, u_n . However, for a bivariate gamma density $f_{XY}(x, y)$, the two frequency factors K_X and K_Y are correlated through two correlated standard normal deviates Uand V, with a correlation coefficient ρ_{UV} .

1/14/2016

RSLAB-

Thus, random number generation of the second frequency factor K_y must take into consideration the correlation between K_x and K_y which stems from the correlation between U and V.

Conditional normal density

 Given a random number of U, say u, the conditional density of V is expressed by the following conditional normal density

$$\phi_{V|U}(v \mid U = u) = \frac{1}{\sqrt{2\pi(1 - \rho_{UV}^2)}} \cdot \exp\left\{-\frac{1}{2}\left[\frac{v - \rho_{UV}u}{\sqrt{1 - \rho_{UV}^2}}\right]^2\right\}$$

with mean $\rho_{UV}u$ and variance $1-\rho_{UV}^2$.

1/14/2016

Thus, based on a random sample u_1, u_2, \dots, u_n of U, a random sample of V, say v_1, v_2, \dots, v_n , can be generated by a normal random number generator with means $\rho_{UV}u_i$ $(i = 1, 2, \dots, n)$ and variance

$$1-
ho_{UV}^2$$
 .

1/14/2016

$$\phi_{V|U}(v \mid U = u) = \frac{1}{\sqrt{2\pi(1 - \rho_{UV}^2)}} \cdot \exp\left\{-\frac{1}{2}\left[\frac{v - \rho_{UV}u}{\sqrt{1 - \rho_{UV}^2}}\right]^2\right\}$$

 $X = \mu_X + K\sigma_X$

From the two sets of random samples u_1, u_2, \dots, u_n and v_1, v_2, \dots, v_n , Eq. (A) can be used to obtain random samples of the two frequency factors K_X and K_{Y} , i.e., $k_{x_1}, k_{x_2}, \dots, k_{x_n}$ and $k_{y_1}, k_{y_2}, \dots, k_{y_n}$. Given the expected values (μ_{x} and μ_{y}) and standard deviations (σ_x and σ_y) of random variables X and Y, random samples of the bivariate gamma distribution can be obtained by transferring $k_{x_1}, k_{x_2}, \dots, k_{x_n}$ and $k_{y_1}, k_{y_2}, \dots, k_{y_n}$ to x_1, x_2, \dots, x_n and y_1, y_2, \dots, y_n .

1/14/2016

Flowchart of BVG simulation (1/2)

1/14/2016

RSLAB-

Flowchart of BVG simulation (2/2)

1/14/2016

RSLAB-N

In practice, stochastic simulation of a bivariate gamma distribution requires the generated random samples to have pre-specified mean, standard deviation, coefficient of skewness (($\mu_x, \sigma_x, \gamma_x$)) and $(\mu_{\nu}, \sigma_{\nu}, \gamma_{\nu})$, and correlation coefficient $\rho_{\gamma\nu}$. In order for the generated samples to meet such requirements, the correlation coefficient ρ_{IIV} must be determined from the pre-specified γ_x, γ_y , and ρ_{xy} through the following equation:

1/14/2016

 $\rho_{XY} \sim \rho_{UV}$ Conversion

 $\rho_{XY} \approx \left(A_X A_Y - 3A_X C_Y - 3C_X A_Y + 9C_X C_Y\right)\rho_{UV}$ $+2B_{v}B_{v}\rho_{\mu\nu}^{2}+6C_{v}C_{v}\rho_{\mu\nu}^{3}$ **[B]** $A_X = 1 + \left(\frac{\gamma_X}{6}\right)^4 \qquad B_X = \frac{\gamma_X}{6} - \left(\frac{\gamma_X}{6}\right)^5 \qquad C_X = \frac{1}{3} \left(\frac{\gamma_X}{6}\right)^2$ $A_{Y} = 1 + \left(\frac{\gamma_{Y}}{6}\right)^{4} \qquad B_{Y} = \frac{\gamma_{Y}}{6} - \left(\frac{\gamma_{Y}}{6}\right)^{3} \qquad C_{Y} = \frac{1}{3} \left(\frac{\gamma_{Y}}{6}\right)^{2}$

1/14/2016

Derivation of the $\rho_{XY} \sim \rho_{UV}$ relationship

Suppose that random variables X and Y form a bivariate gamma distribution. Given the means $(\mu_X \text{ and } \mu_Y)$ and standard deviations $(\sigma_X \text{ and } \sigma_Y)$, X and Y can be respectively expressed in terms of their corresponding frequency factors K_X and K_Y , i.e.,

 $X = \mu_X + K_X \sigma_X$ and $Y = \mu_Y + K_Y \sigma_Y$. Note that, with given means μ_X and μ_Y and standard deviations σ_X and σ_Y , the coefficients of skewness γ_X and γ_Y can be readily determined.

1/14/2016

RSLAB-N

From the above equations, it can be easily shown that frequency factors K_X and K_Y are distributed with zero mean and unit standard deviation, and correlation coefficient of X and Y is equivalent to correlation coefficient of K_X and K_Y , i.e., $E[K_{y}] = E[K_{y}] = 0$, $Var[K_v] = Var[K_v] = 1$, and

$$\rho_{XY} = \rho_{K_X K_Y}$$

1/14/2016

Frequency factors K_x and K_y can be respectively approximated by

$$K_{X} \approx U + \left(U^{2} - 1\right)\frac{\gamma_{X}}{6} + \frac{1}{3}\left(U^{3} - 6U\right)\left(\frac{\gamma_{X}}{6}\right)^{2} - \left(U^{2} - 1\right)\left(\frac{\gamma_{X}}{6}\right)^{3} + U\left(\frac{\gamma_{X}}{6}\right)^{4} - \frac{1}{3}\left(\frac{\gamma_{X}}{6}\right)^{5}$$
$$K_{Y} \approx V + \left(V^{2} - 1\right)\frac{\gamma_{Y}}{6} + \frac{1}{3}\left(V^{3} - 6V\right)\left(\frac{\gamma_{Y}}{6}\right)^{2} - \left(V^{2} - 1\right)\left(\frac{\gamma_{Y}}{6}\right)^{3} + V\left(\frac{\gamma_{Y}}{6}\right)^{4} - \frac{1}{3}\left(\frac{\gamma_{Y}}{6}\right)^{5}$$

where U and V both are random variables with standard normal density and are correlated with correlation ρ_{UV} coefficient .

1/14/2016
Correlation coefficient of K_x and K_y can be derived as follows:

 $\rho_{K_{X}K_{Y}} = Cov(K_{X}, K_{Y}) = E[K_{X}K_{Y}]$ $\approx E\left\{ \begin{bmatrix} U + (U^{2} - 1)\frac{\gamma_{X}}{6} + \frac{1}{3}(U^{3} - 6U)(\frac{\gamma_{X}}{6})^{2} - (U^{2} - 1)(\frac{\gamma_{X}}{6})^{3} + U(\frac{\gamma_{X}}{6})^{4} - \frac{1}{3}(\frac{\gamma_{X}}{6})^{5} \end{bmatrix} \cdot \begin{bmatrix} V + (V^{2} - 1)\frac{\gamma_{Y}}{6} + \frac{1}{3}(V^{3} - 6V)(\frac{\gamma_{Y}}{6})^{2} - (V^{2} - 1)(\frac{\gamma_{Y}}{6})^{3} + V(\frac{\gamma_{Y}}{6})^{4} - \frac{1}{3}(\frac{\gamma_{Y}}{6})^{5} \end{bmatrix} \cdot \begin{bmatrix} V + (V^{2} - 1)\frac{\gamma_{Y}}{6} + \frac{1}{3}(V^{3} - 6V)(\frac{\gamma_{Y}}{6})^{2} - (V^{2} - 1)(\frac{\gamma_{Y}}{6})^{3} + V(\frac{\gamma_{Y}}{6})^{4} - \frac{1}{3}(\frac{\gamma_{Y}}{6})^{5} \end{bmatrix} \cdot \begin{bmatrix} V + (V^{2} - 1)\frac{\gamma_{Y}}{6} + \frac{1}{3}(V^{3} - 6V)(\frac{\gamma_{Y}}{6})^{2} - (V^{2} - 1)(\frac{\gamma_{Y}}{6})^{3} + V(\frac{\gamma_{Y}}{6})^{4} - \frac{1}{3}(\frac{\gamma_{Y}}{6})^{5} \end{bmatrix} \cdot \begin{bmatrix} V + (V^{2} - 1)\frac{\gamma_{Y}}{6} + \frac{1}{3}(V^{3} - 6V)(\frac{\gamma_{Y}}{6})^{2} - (V^{2} - 1)(\frac{\gamma_{Y}}{6})^{3} + V(\frac{\gamma_{Y}}{6})^{4} - \frac{1}{3}(\frac{\gamma_{Y}}{6})^{5} \end{bmatrix} \cdot \begin{bmatrix} V + (V^{2} - 1)\frac{\gamma_{Y}}{6} + \frac{1}{3}(V^{3} - 6V)(\frac{\gamma_{Y}}{6})^{2} - (V^{2} - 1)(\frac{\gamma_{Y}}{6})^{3} + V(\frac{\gamma_{Y}}{6})^{4} - \frac{1}{3}(\frac{\gamma_{Y}}{6})^{5} \end{bmatrix} \right\}$

Laboratory for Remote Sensing Hydrology and Spatial Modeling, Dept of Bioenvironmental Systems Engineering, National Taiwan Univ.

1/14/2016

73

$$\begin{split} K_{X} &\approx U \bigg[1 + \bigg(\frac{\gamma_{X}}{6} \bigg)^{4} \bigg] + \big(U^{2} - 1 \big) \bigg[\frac{\gamma_{X}}{6} - \bigg(\frac{\gamma_{X}}{6} \bigg)^{3} \bigg] + \frac{1}{3} \big(U^{3} - 6U \big) \bigg(\frac{\gamma_{X}}{6} \bigg)^{2} - \frac{1}{3} \bigg(\frac{\gamma_{X}}{6} \bigg)^{5} \\ &= A_{X}U + B_{X} \bigg(U^{2} - 1 \bigg) + C_{X} \bigg(U^{3} - 6U \bigg) + D_{X} \\ K_{Y} &\approx V \bigg[1 + \bigg(\frac{\gamma_{Y}}{6} \bigg)^{4} \bigg] + \big(V^{2} - 1 \big) \bigg[\frac{\gamma_{Y}}{6} - \bigg(\frac{\gamma_{Y}}{6} \bigg)^{3} \bigg] + \frac{1}{3} \big(V^{3} - 6V \big) \bigg(\frac{\gamma_{Y}}{6} \bigg)^{2} - \frac{1}{3} \bigg(\frac{\gamma_{Y}}{6} \bigg)^{5} \\ &= A_{Y}V + B_{Y} \bigg(V^{2} - 1 \bigg) + C_{Y} \bigg(V^{3} - 6V \bigg) + D_{Y} \end{split}$$

$$A_{X} = 1 + \left(\frac{\gamma_{X}}{6}\right)^{4}, \quad B_{X} = \frac{\gamma_{X}}{6} - \left(\frac{\gamma_{X}}{6}\right)^{3}, \quad C_{X} = \frac{1}{3}\left(\frac{\gamma_{X}}{6}\right)^{2}, \quad D_{X} = -\frac{1}{3}\left(\frac{\gamma_{X}}{6}\right)^{5}$$
$$A_{Y} = 1 + \left(\frac{\gamma_{Y}}{6}\right)^{4}, \quad B_{Y} = \frac{\gamma_{Y}}{6} - \left(\frac{\gamma_{Y}}{6}\right)^{3}, \quad C_{Y} = \frac{1}{3}\left(\frac{\gamma_{Y}}{6}\right)^{2}, \quad D_{Y} = -\frac{1}{3}\left(\frac{\gamma_{Y}}{6}\right)^{5}$$

RSLAB-NT

 $E K_{\rm x} K_{\rm y}$ $\begin{bmatrix} A_X A_Y UV + A_X B_Y U(V^2 - 1) + A_X C_Y U(V^3 - 6V) \\ + A_X D_Y U + B_X A_Y V(U^2 - 1) + B_X B_Y (U^2 - 1)(V^2 - 1) \end{bmatrix}$ $\approx E \begin{vmatrix} +B_{X}C_{Y}(U^{2}-1)(V^{3}-6V) + B_{X}D_{Y}(U^{2}-1) \\ +C_{X}A_{Y}(U^{3}-6U)V + C_{X}B_{Y}(U^{3}-6U)(V^{2}-1) \end{vmatrix}$ $+C_{X}C_{Y}(U^{3}-6U)(V^{3}-6V)+C_{X}D_{Y}(U^{3}-6U)$ $\left[+ D_X A_Y V + D_X B_Y (V^2 - 1) + D_X C_Y (V^3 - 6V) + D_X D_Y \right]$

RSLAB-N

$$E[K_{X}K_{Y}]$$

$$\approx E\begin{bmatrix}A_{X}A_{Y}UV + A_{X}C_{Y}U(V^{3} - 6V) + B_{X}B_{Y}(U^{2} - 1)(V^{2} - 1) \\ + C_{X}A_{Y}(U^{3} - 6U)V + C_{X}C_{Y}(U^{3} - 6U)(V^{3} - 6V) + D_{X}D_{Y}\end{bmatrix}$$

$$E[K_{X}] \approx E[A_{X}U + B_{X}(U^{2} - 1) + C_{X}(U^{3} - 6U) + D_{X}] = D_{X}$$
Since K_{X} and K_{Y} are distributed with zero means, it follows that

 $D_X = D_Y \approx 0$

1/14/2016

RSLAB-NT

$$\begin{split} \rho_{K_{X}K_{Y}} &= E[K_{X}K_{Y}] \\ &\approx E\begin{bmatrix} A_{X}A_{Y}UV + A_{X}C_{Y}U(V^{3} - 6V) + B_{X}B_{Y}(U^{2} - 1)(V^{2} - 1) \\ + C_{X}A_{Y}(U^{3} - 6U)V + C_{X}C_{Y}(U^{3} - 6U)(V^{3} - 6V) \end{bmatrix} \\ &= A_{X}A_{Y}\rho_{UV} + A_{X}C_{Y}[E(UV^{3}) - 6\rho_{UV}] + B_{X}B_{Y}[E(U^{2}V^{2}) - 1] \\ &+ C_{X}A_{Y}[E(U^{3}V) - 6\rho_{UV}] \\ &+ C_{X}C_{Y}[E(U^{3}V) - 6\rho_{UV}] \\ &+ C_{X}C_{Y}[E(U^{3}V) - 6\rho_{UV}] \end{split}$$

RSLAB-NT

It can also be shown that

$$E(U^{2}V^{2}) = 2\rho_{UV}^{2} + 1 \qquad E(U^{3}V^{3}) = 6\rho_{UV}^{3} + 9\rho_{UV}$$
$$E(U^{3}V) = E(UV^{3}) = 3\rho_{UV}$$
Thus,
$$\rho_{XY} = \rho_{K_{X}K_{Y}} \approx (A_{X}A_{Y} - 3A_{X}C_{Y} - 3C_{X}A_{Y} + 9C_{X}C_{Y})\rho_{UV}$$
$$+ 2B_{X}B_{Y}\rho_{UV}^{2} + 6C_{X}C_{Y}\rho_{UV}^{3}$$

1/14/2016

RSLAB-N

Equation (B) indicates that $\rho_{_{XY}}$ can be expressed as a third order polynomial of $ho_{\scriptscriptstyle I\!I\!V}$. It is therefore of practical concern whether there exits a unique $ho_{
m nv}$ for a given set of $(\gamma_x, \gamma_y, \rho_{xy})$. Or equivalently, given a set of $(\gamma_x, \gamma_y, \rho_{yy})$, does Eq. (B) return a single-value of ρ_{IIV} ?

1/14/2016

$\rho_{XY} \sim \rho_{UV}$ Single - Value Relationsh ip

We have also proved that Eq. (B) is indeed a single-value function.

1/14/2016

RSLAB-N

Laboratory for Remote Sensing Hydrology and Spatial Modeling, Dept of Bioenvironmental Systems Engineering, National Taiwan Univ.

80

Proof of Eq. (B) as a single-value function

Let $f(\rho_{IIV}) = \partial \rho_{XV} / \partial \rho_{IIV}$. From Eq. (B) we have $f(\rho_{IIV}) = (A_{V}A_{V} - 3A_{V}C_{V} - 3C_{V}A_{V} + 9C_{V}C_{V})$ $+4B_{y}B_{v}\rho_{tw}+18C_{y}C_{v}\rho_{tw}^{2}$ $A_{y}A_{y} - 3A_{y}C_{y} - 3C_{y}A_{v} + 9C_{y}C_{v} = (A_{y} - 3C_{y})(A_{v} - 3C_{v})$ $A_{\mathcal{X}} - 3C_{\mathcal{X}} = 1 + \left(\frac{\gamma_{\mathcal{X}}}{6}\right)^4 - \left(\frac{\gamma_{\mathcal{X}}}{6}\right)^2 = \left[\left(\frac{\gamma_{\mathcal{X}}}{6}\right)^2 - 1\right]^4 + \left(\frac{\gamma_{\mathcal{X}}}{6}\right)^2 > 0$ $A_{\underline{\gamma}} - 3C_{\underline{\gamma}} = 1 + \left(\frac{\gamma_{\underline{\gamma}}}{6}\right)^4 - \left(\frac{\gamma_{\underline{\gamma}}}{6}\right)^2 = \left|\left(\frac{\gamma_{\underline{\gamma}}}{6}\right)^2 - 1\right|^4 + \left(\frac{\gamma_{\underline{\gamma}}}{6}\right)^2 > 0.$

Therefore,

 $A_{X}A_{Y} - 3A_{X}C_{Y} - 3C_{X}A_{Y} + 9C_{Y}C_{Y}$ $=\left\{\left[\left(\frac{\gamma_X}{6}\right)^2 - 1\right]^2 + \left(\frac{\gamma_X}{6}\right)^2\right\} \left\{\left[\left(\frac{\gamma_Y}{6}\right)^2 - 1\right]^2 + \left(\frac{\gamma_Y}{6}\right)^2\right\}$

1/14/2016

RSLAB-N

Let $g(\rho_{UV}) = 4B_X B_Y \rho_{UV} + 18C_X C_Y \rho_{UV}^2$

$$=\frac{\gamma_X\gamma_Y}{9}\left[\left(\frac{\gamma_X}{6}\right)^2 - 1\right]\left[\left(\frac{\gamma_Y}{6}\right)^2 - 1\right]\rho_{UV} + \frac{18}{9}\left(\frac{\gamma_X}{6}\right)^2\left(\frac{\gamma_Y}{6}\right)^2\rho_{UV}^2$$

Also, let
$$G_X = \frac{\gamma_X}{6}$$
, $G_Y = \frac{\gamma_Y}{6}$. We then have

 $g(\rho_{UV}) = 4G_X G_Y (G_X^2 - 1)(G_Y^2 - 1)\rho_{UV} + 2G_X^2 G_Y^2 \rho_{UV}^2$

1/14/2016

RSLAB-N

 $f(\rho_{UV}) = \left[(G_X^2 - 1)^2 + G_X^2 \right] \left[(G_V^2 - 1)^2 + G_V^2 \right]$ $+4G_{v}G_{v}(G_{v}^{2}-1)(G_{v}^{2}-1)\rho_{mv}+2G_{v}^{2}G_{v}^{2}\rho_{mv}^{2}$

 $\frac{\partial f}{\partial \rho_{UV}} = 4G_X G_Y (G_X^2 - 1)(G_Y^2 - 1) + 4G_X^2 G_Y^2 \rho_{UV}$

Let $\frac{\partial f}{\partial \rho_{UV}} = 0$, it yields an extreme value of f at

$$\rho_{UV}^* = -\frac{(G_X^2 - 1)(G_Y^2 - 1)}{G_X G_Y}$$

1/14/2016

 $f(\rho_{UV}^{*}) = \left| (G_{V}^{2} - 1)^{2} + G_{V}^{2} \right| \left| (G_{V}^{2} - 1)^{2} + G_{V}^{2} \right|$ $-4(G_v^2-1)^2(G_v^2-1)^2+2(G_v^2-1)^2(G_v^2-1)^2$ $= \left| (G_{\chi}^{2} - 1)^{2} + G_{\chi}^{2} \right| \left| (G_{\chi}^{2} - 1)^{2} + G_{\chi}^{2} \right| - 2(G_{\chi}^{2} - 1)^{2} (G_{\chi}^{2} - 1)^{2}$ $=G_{v}^{2}(G_{v}^{2}-1)^{2}+(G_{v}^{2}-1)^{2}G_{v}^{2}+G_{v}^{2}G_{v}^{2}-(G_{v}^{2}-1)^{2}(G_{v}^{2}-1)^{2}$ Since $-1 \le \rho_{IV} \le 1$ (or equivalently, $\rho_{IV}^2 \le 1$), it yields $(G_v^2 - 1)^2 (G_v^2 - 1)^2 \le G_v^2 G_v^2$ Thus, $f(\rho_{vw}^*) \ge G_v^2 (G_v^2 - 1)^2 + (G_v^2 - 1)^2 G_v^2 > 0$

We now check the second derivative of $f(\rho_{UV})$, i.e.,

$$\frac{\partial^2 f}{\partial (\rho_{UV})^2} = 4G_X^2 G_Y^2 > 0$$

Therefore, $f(\rho_{UV}^*) > 0$ is the minimum of the

function $f(\rho_{UV}) = \partial \rho_{XY} / \partial \rho_{UV}$. It follows that $f(\rho_{UV}) = \partial \rho_{XY} / \partial \rho_{UV} > 0$ for all possible values of ρ_{UV} .

1/14/2016

The above equation indicates *P_{XY}* increases with increasing *P_{UV}*, and thus Eq. (B) is a single-value function.

Conceptual description of a gamma random field simulation approach

1/14/2016

RSLAB-

Laboratory for Remote Sensing Hydrology and Spatial Modeling, Dept of Bioenvironmental Systems Engineering, National Taiwan Univ.

1/14/2016