WESTERN NORTH PACIFIC (WNP) AS AN ENSO PRECURSOR AND ITS CHANGE UNDER GLOBAL WARMING

JIN-HO YOON

SCHOOL OF EARTH SCIENCES AND ENVIRONMENTAL ENGINEERING

GWANGJU INSTITUTE OF SCIENCE AND TECHNOLOGY

MANY THANKS TO MY CO-AUTHORS S.-Y. (SIMON) WANG @ USU MICHELLE L'HEUREUX @CPC/NOAA

S.-Y. WANG, M. L'HEUREUX, AND J.-H. YOON, 2013: ARE GREENHOUSE GASES CHANGING ENSO PRECURSORS IN THE WESTERN NORTH PACIFIC?, J. CLIMATE (CESM SPECIAL ISSUE), DOI:10.1175/JCLI-D-12-00360.1

WHAT ARE "PRECURSORS" OF ENSO?

- WESTERLY WIND BURST → POSITIVE FEEDBACK SUCH AS ZONAL
 CURRENT AND THERMOCLINE FEEDBACK → LEAD TO ENSO
- NPO (NORTH PACIFIC OSCILLATION) THROUGH 'SEASONAL FOOTPRITING MECHANISM'
- PMM (PACIFIC MERIDIONAL MODE) SIMILAR TO NPO TYPE BUT INVOLVES 'WIND-EVAPORATION-SST FEEDBACK'

EVOLUTION OF ENSO

Response Of East Indian And West Pacific Ocean SST Anomalies To ENSO Events Opposes The "Normal" Response

(During El Nino Events, SST Anomalies Of Portions Of East Indian and West Pacific Oceans Drop)

ENSO evolution:

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 1 1.2

(Wang and An 2002; Guan and Nigam 2008)

earlier

0

WNP AS AN ENSO PRECURSOR

Western North Pacific

WNP AS AN ENSO PRECURSOR

Western North Pacific

WNP AS AN ENSO PRECURSOR

Western North Pacific

WHY WESTERN NORTH PACIFIC (WNP)?

SSTDJF Mean

(1) East Asian Winter Monsoon impact

Kuroshio Current

Barotropic model w/ composite WNP heat source/sink

WHY WESTERN NORTH PACIFIC (WNP)?

(2) Oceanic Kelvin wave – zonal wind triggered

WHY WESTERN NORTH PACIFIC (WNP)?

KW dynamic height composite

(2) Oceanic Kelvin wave – zonal wind triggered

IS GHG forcing CENHANCING ENSO PRECURSORS IN THE WESTERN NORTH PACIFIC?

25-YR SLIDING CORRELATION OF SSTA

CORRELATION FOR ENSO PRECURSORS

USING EARTH SYSTEM MODEL (ESM) – CESM1

25-YR SLIDING CORRELATION OF SSTA

Historical forcing experiments (1850-2005):

 \leftarrow holy cow

HOW GOOD IS CESM REALISTIC ENSO PRE-CON

OTHER MODELS (FROM CMIP5)

LEAD-LAG CORRELATION OF NINO3.4 WITH SST

Observations

CESM1-CAM5.1-FV2

-0.9 -0.7 -0.5 -0.9 -0.1 0.1 0.9 0.5 0.7 0.9

CAM - the Atmospheric Component of CCSM/CESM

Model	CCSM3 (2004)	CCSM3.5 (2007)	CCSM4 (Apr 2010)	CESM1 (Jun 2010)
Atmosphere	CAM3 (L26)	CAM3.5 (L26)	CAM4 (L26)	CAM5 (L30)
Boundary Layer Turbulence	Holtslag-Boville (93) Dry Turbulence	Holtslag-Boville	Holtslag-Boville	Bretherton-Park (09) Moist Turbulence
Shallow Convection	Hack (94)	Hack	Hack	Park-Bretherton (09) Shallow Convection
Deep Convection	Zhang-McFarlane (95)	Zhang-McFarlane Neale et al.(08) Richter-Rasch (08)	Zhang-McFarlane Neale et al.(08) Richter-Rasch (08)	Zhang-McFarlane Neale et al.(08) Richter-Rasch (08)
Cloud Macrophysics	Zhang et al. (03)	Zhang et al. with Park & Vavrus' mods.	Zhang et al. with Park & Vavrus' mods.	Park-Bretherton-Rasch (10) Cloud Macrophysics
Stratiform Microphysics	Rasch-Kristjansson (98) Single Moment	RK Single Moment	RK Single Moment	Morrison and Gettelman (08) Double Moment
Radiation / Optics	CAMRT (01)	CAMRT	CAMRT	RRTMG lacono et al.(08) / Mitchell (08)
Aerosols	Bulk Aerosol Model (BAM)	BAM	BAM	Modal Aerosol Model (MAM) Liu & Ghan (2009)
Dynamics	Spectral	Finite Volume (96,04)	Finite Volume	Finite Volume
Ocean	POP2 (L40)	POP2.1 (L60)	POP2.2 - BGC	POP2.2
Land	CLM3	CLM3.5	CLM4 - CN	CLM4
Sea Ice	CSIM4	CSIM4	CICE	CICE

• NPO-like mode leads WNP to trigger ENSO

• GHG appears to enhance (accelerate) this process

 MANY DISCUSSIONS WITH B. ANDERSON (BU), K. BALAGURU (PNNL), AND MORE.

 SUPPORT FROM EARTH SYSTEM MODELING PROGRAM/OFFICE OF SCIENCE/US DOE.

24

BACK-UP SLIDES

WHAT IS THE SFM (SEASONAL FOOTPRINTING MECHANICM) OR PMM (PACIFIC MERIC The Seasonal Footprinting Mechanism in the Pacific: Implications for ENSO*

 Atmo-Ocean coupled climate variability
 → MCA (Maximum Covariance Analysis, or SVD of Bretherton et al. 1992)
 → similar to Multi-variate EOF DANIEL J. VIMONT, JOHN M. WALLACE, AND DAVID S. BATTISTI

Department of Atmospheric Sciences, University of Washington, Seattle, Washington

(Manuscript received 15 February 2002, in final form 23 July 2002)

ABSTRACT

Midlatitude atmospheric variability is identified as a particularly effective component of the stochastic forcing of ENSO. This forcing is realized via a seasonal footprinting mechanism (SFM), in which the tropical atmosphere is forced during the spring and summer by SST anomalies generated by midlatitude atmospheric variability during the previous winter. The strong relationship between the SFM and ENSO may serve to enhance ENSO predictability and supports the view that ENSO is linearly stable in nature.

THANK YOU VERY MUCH!

0