
Numerical Methods for Wave Equations Scheme for Wave Equations on Spherical Surfaces Numerical Results

Numerical Partial Differential Equations:
Pseudospectral Methods for Wave Equations on Spherical

Surfaces

Chun-Hao Teng

Department of Applied Mathematics
National Chung Hsing University, Taichung 701, Taiwan



Numerical Methods for Wave Equations Scheme for Wave Equations on Spherical Surfaces Numerical Results

Outline

1 Numerical Methods for Wave Equations
Pseudospectral Method for Model Wave Problem
Runge-Kutta Methods

2 Scheme for Wave Equations on Spherical Surfaces
Cubed Sphere
Numerical Method for Wave Equations on Spherical Surfaces

3 Numerical Results



Numerical Methods for Wave Equations Scheme for Wave Equations on Spherical Surfaces Numerical Results

Legendre Pseudospectral Method I
Concepts and Notations

PN(x): Legendre polynomial of degree N.
Legendre-Gauss-Lobatto (LGL) grid points xi

−1 = x0 < x1 < x2 < · · · < xN−1 < xN = 1, roots of (1− x2)P′N(x)

Lagrange interpolation polynomials:

lj(x) =
−(1− x2)P′N(x)

N(N + 1)(x− xj)PN(xj)
, lj(xi) = δij =

{
1 if i = j
0 otherwise

Approximation of u(x) defined on [−1, 1] and its derivative u′:

u(x) ≈ INu(x) =

N∑
j=0

lj(x)u(xj), u′(x) ≈ d
dx
INu(x) =

N∑
j=0

l′j(x)u(xj)

LGL quadrature integration rule:∫ 1

−1
f (x) dx =

N∑
i=0

ωi f (xi), ωi: quadrature weights

provided that f (x) is a polynomial of degree at most 2N − 1.
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Legendre Pseudospectral Method II
Exponential Convergency

Numerical derivatives at the LGL points:

u′(xi) ≈
d
dx
INu(xi) =

N∑
j=0

l′j(xi)u(xj)

Figure: Errors of the numerical differentiation u′(xi)− d
dxINu(xi) for

u = sin(kπx) for various values of k.



Numerical Methods for Wave Equations Scheme for Wave Equations on Spherical Surfaces Numerical Results

Model Wave Problem
Consider u(x, t) satisfying the problem:

∂u
∂t

+
∂u
∂x

= 0 x ∈ [−1, 1] t ≥ 0

u(x, 0) = f (x) x ∈ [−1, 1] t = 0
u(−1, t) = g(t) x = −1 t ≥ 0.

Define the energy-norm for u as

E(t) =

∫ 1

−1
u2(x, t) dx

Then we have

dE(t)
dt

=
d
dt

∫ 1

−1
u2dx =

∫ 1

−1
2u
∂u
∂t

dx = −
∫ 1

−1
2u
∂u
∂x

dx = −
∫ 1

−1

∂u2

∂x
dx

=u2(−1, t)− u2(1, t) = g2(t)− u2(1, t) ≤ g2(t)

implying that

E(t) ≤ E(0) +

∫ t

0
g2(ξ) dξ ≤ E(0) + t · G, G = max

ξ∈[0,t]
g2(ξ)

⇒
∫ 1

−1
u2(x, t)dx ≤

∫ 1

−1
f 2(x)dx + t · G

The solution is bounded by the prescribed data.
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Pseudospectral Penalty Method for Wave Problem I
Consider the problem:

∂u
∂t

+
∂u
∂x

= 0 x ∈ [−1, 1], t ≥ 0

u(x, 0) = f (x) x ∈ [−1, 1]

u(−1, t) = g(t) t ≥ 0

satisfying the energy estimate∫ 1

−1
u2(x, t)dx ≤

∫ 1

−1
f 2(x)dx + t · G

G = max
ξ∈[0,t]

g2(ξ)

We seek a numerical solution of the form

v(x, t) =

N∑
j=0

lj(x)vj(t) (polynomial of degree N in x)

satisfying the collocation equations:

∂v(xi, t)
∂t

+
∂v(xi, t)
∂x

= −τ ·δ0i·(v0(t)−g(t)), vi(0) = f (xi), i = 0, 1, · · · ,N

where the boundary condition is imposed weakly and τ is a
parameter.
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Pseudospectral Penalty Method for Wave Problem II
Semi-discrete scheme:

∂v(xi, t)
∂t

+
∂v(xi, t)
∂x

= −τ δ0i (v(−1, t)− g(t)), ∀i = 0, 1, 2, . . . ,N

Observe that1
1 Consistency: Replacing v(xi, t) by u(xi, t) we obtain

∂u(xi, t)
∂t

+
∂u(xi, t)
∂x

= 0, ∀i = 0, 1, 2, . . . ,N (recover PDE)

independent of τ .
2 as τ → 0
∂v(x0, t)
∂t

+
∂v(x0, t)
∂x

= −τ (v(−1, t)− g(t))→ 0 (mimicking PDE)

3 as τ →∞

v(−1, t)− g(t) =
−1
τ

(
∂v(x0, t)
∂t

+
∂v(x0, t)
∂x

)
→ 0 (mimicking BC)

1D. Funaro and D. Gottlieb, A new method of imposing boundary conditions in
pseudospectral approximations of hyperbolic equations, Math. Comp., 51 (1988)
599-613.
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Pseudospectral Penalty Method for Wave Problem III
Numerical Energy Estimate

We have the scheme:

∂v(xi, t)
∂t

+
∂v(xi, t)
∂x

= −τ δ0i (v0 − g(t)), ∀i = 0, 1, 2, . . . ,N

Define the discrete energy-norm as

ED(t) =

N∑
i=0

v2
j (t)ωi =

N∑
i=0

v2(xi, t)ωi (mimicking E =

∫ 1

−1
u2(x, t)dx)

We have the energy rate equation as

dED(t)
dt

=

N∑
i=0

2vi
dvi

dt
ωi = −

N∑
i=0

2v(xi, t)
∂v(xi, t)
∂x

ωi −
N∑

i=0

2τ δ0i ωi vi (v0 − g(t))

=

∫ 1

−1
2v(x, t)

∂v(xi, t)
∂x

dx− 2τω0v0(v0 − g(t))

= −v(x, t)|1−1 − 2τω0v0(v0 − g(t)) = −v2
N + v2

0 − 2τω0v0(v0 − g(t))
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Pseudospectral Penalty Method for Wave Problem IV
We obtain the energy rate equation as

dED(t)
dt

= −v2
N + v2

0 − 2τω0v0(v0 − g(t))

Taking τ = 1/ω0 we obtain

dED(t)
dt

= −v2
N + v2

0 − 2v2
0 + 2v0g(t)− g2(t) + g2(t)

= −v2
N − (v0 − g(t))2 + g2(t) ≤ g2(t)

implying

ED(t) ≤ ED(0) +

∫ t

0
g2(ξ) dξ ≤ ED(0) + t G, G = max

ξ∈[0,t]
g2(ξ)

or equivalently,
N∑

i=0

v2
j (t)ωi ≤

N∑
i=0

f 2
j ωi+t G mimicking

∫ 1

−1
u2(x, t)dx ≤

∫ 1

−1
f 2(x)dx+t·G.

The numerical solution is bounded by the prescribed data
independent of N, implying stability.
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Numerical Computations
Semi-discrete scheme:

∂v(xi, t)
∂t

+
∂v(xi, t)
∂x

= −τ δ0i (v(−1, t)− g(t)), ∀i = 0, 1, 2, . . . ,N

v(xi, 0) = f (xi)

Introducing the following notations

v(t) =


v0

v1

...
vN

 , f =


f (x0)
f (x1)

...
f (xN)

 , e0 =


1
0
...
0

 , D =


l′0(x0) l′1(x0) · · · l′N(x0)
l′0(x1) l′1(x1) · · · l′N(x1)

...
...

l′0(xN) l′1(xN) · · · l′N(xN)


We can express the scheme as a system of ODEs:

dv(t)
dt

= −Dv− τe0(v0(t)− g(t))

v(0) = f

which can be solved by ODE integration methods, for example, Runge-Kutta
methods.
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Convergence Test
Test example:

u(x, t) = sin(π(x− t))

u(x, 0) = sin(πx)

u(−1, t) = sin(π(−1− t))

Legendre method in space

Runge-Kutta 4th order in time

N Error Order
8 5.3860e-03 —
12 7.7090e-06 16.15
16 2.4318e-06 4.01
20 9.9604e-07 4.00
24 4.8032e-07 4.00

Figure: Left: Computed wave profile at time = 1.00. Right: Maximum errors
|u(x, t)− vj(t)| for different values of N at time = 1.00.
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Instability and Penalty Boundary Conditions
Scheme:

dv(t)
dt

= −Dv− τe0(v0(t)− g(t)), v(0) = f

For stability we need τ ≥ 0.5/ω0.

Figure: Left: Solution profile obtained by τ = 0.5/ω0.Right: Solution profile
obtained by τ = 0.47/ω0
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Multidomian Pseudospectral Penalty Formulation

Multidomian formulation
Complex Physics Problems

Elastodynamics
Fluid dynamics
Electromagnetics
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General Runge-Kutta (RK) Methods
All discretizations of the spatial operator in a PDE, result in a system
of ODEs of the form

duN

dt
= LN(uN(x, t), x, t),

or in matrix-vector form
du(t)

dt
= L(u(t), t), u = [u0(t) u1(t) .... uN(t)]T ,

L : matrix representation of LN .

s-stage explicit Runge-Kutta scheme:

k1 = L(un, n∆t), un = u(tn)

ki = L

un + ∆t
i−1∑
j=1

aij ki, (n + ci)∆t


un+1 = un + ∆t

s∑
i=1

biki

The choice of the
constants aij, ci and bi

determines the accuracy
and efficiency of the
overall scheme.
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Fourth-Order Four-Stage RK Methods
The classical fourth-order accurate, four-stage scheme is

k1 = L(un, n∆t)

k2 = L
(

un +
1
2

∆t k1,
(
n +

1
2
)
∆t
)

k3 = L
(

un +
1
2

∆t k2,
(
n +

1
2
)
∆t
)

k4 = L (un + ∆t k3, (n + 1)∆t)

un+1 = un +
∆t
6

(k1 + 2k2 + 2k3 + k4).

The Runge-Kutta schemes require more evaluations of L then
the multi-step schemes require to advance a time-step.
Unlike the multi-step schemes, the Runge-Kutta methods require
no information from previous time-steps.
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Satbility Region of RK Methods I

To study the linear stability of these schemes we consider the linear
scalar equation

du
dt

= λ u,

The general s-stage scheme can be expressed as a truncated Taylor
expansion of the exponential functions

un+1 =

s∑
i=1

(λ∆t)i

i!
un.

Thus, the scheme is stable for a region of λ∆t for which∣∣∣∣∣
s∑

i=1

(λ∆t)i

i!

∣∣∣∣∣ ≤ 1.
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Stability Region of RK Methods II

Figure: Stability regions for Runge-Kutta methods

Necessary condition for stability: All the eigenvalues of L(u, t) ·∆t
must lie in the stability region for a given method.
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Low-Storage RK Methods (RK3S4)
The s-stage low-storage method is

u0 = un

∀ j ∈ [1, . . . , s] :

{
kj = ajkj−1 + ∆t L

(
uj, (n + cj)∆t

)
uj = uj−1 + bj kj

un+1 = us

aj, bj and cj are chosen to yield a scheme of order s− 1.
For the scheme to be self-starting we require that a1 = 0.
We need only two storage levels containing kj and uj to advance
the solution.

A four-stage third-order RK scheme is obtained using the constants

a1 = 0 b1 = 1
3 c1 = 0 a2 = − 11

15 b2 = 5
6 c2 = 1

3

a3 = − 5
3 b3 = 3

5 c3 = 5
9 a4 = −1 b4 = 1

4 c4 = 8
9 .
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Low-Storage RK Methods (RK4S5)
The s-stage low-storage method is

u0 = un

∀ j ∈ [1, . . . , s] :

{
kj = ajkj−1 + ∆t L

(
uj, (n + cj)∆t

)
uj = uj−1 + bj kj

un+1 = us

The constants for a five-stage fourth-order Runge-Kutta scheme are

a1 = 0 b1 = 1432997174477
9575080441755 c1 = 0

a2 = − 567301805773
1357537059087 b2 = 5161836677717

13612068292357 c2 = 1432997174477
9575080441755

a3 = − 2404267990393
2016746695238 b3 = 1720146321549

2090206949498 c3 = 2526269341429
6820363962896

a4 = − 3550918686646
2091501179385 b4 = 3134564353537

4481467310338 c4 = 2006345519317
3224310063776

a5 = − 1275806237668
842570457699 b5 = 2277821191437

14882151754819 c5 = 2802321613138
2924317926251
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Low-Storage and Classical RK Methods

Figure: (left) Stability regions for RK4S5

The stability region of the RK4S5 method is larger and it is
suitable for advection-diffusion equation.
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Wave Equation on Spherical Surface
Consider the wave equation on a spherical surface:

∂h
∂t

+ V · ∇h = 0,

h(λ, φ, t = 0) = h0(λ, φ),

V = Vλ(λ, φ)λ̂+ Vφ(λ, φ)φ̂, ∇ · V = 0

h: depth field

λ, φ: longitude and latitude
coordinates

λ̂, φ̂: unit vector in λ and φ
directions

∇: surface gradient

V: wind field

h0: initial depth field

Notice that the wave equation can be expressed as
∂h
∂t

+ V · ∇h = 0 =⇒ ∂h
∂t

+ V · ∇h + h∇ · V = 0 =⇒ ∂h
∂t

+∇ · (Vh) = 0
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Cubed Sphere Mapping 1

Decompose the spherical surface into 6 equal area surfaces and map
them to planar surfaces of a cube.

1Nari, R. D., Thomas, S. J., and Loft, R. D., A discontinuous Galerkin transport
scheme on the cubed sphere, Mon. Wea. Rev., 117, 130-137
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Multidomain Mesh on Spherical Surface
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Wave Equation on Cube Face
On each planar surface a local coordinate (x1, x2) is set. The wave
problem on each cube surface takes the form:

∂Jh
∂t

+
∂Ju1h
∂x1

+
∂Ju2h
∂x2

= 0, −π
4
≤ x1, x2 ≤

π

4
h(x1, x2, t = 0) = h0(x1, x2)

h = h(x1, x2, t): mapped
depth field

J: coordinate mapping
jacobian function

u1, u2: contravarient
components of V

u1 = ∇x1 · V
u2 = ∇x2 · V
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Numerical Scheme
Introduce a linear mapping

ν = 1, 2 xν = xν(ξν), (x1, x2) ∈ D→ (ξ1, ξ2) ∈ [−1, 1]2

The wave problem defined on D can be mapped to I = [−1, 1]2:

∂Jh
∂t

+
∂Ju1h
∂x1

+
∂Ju2h
∂x2

= 0, (x1, x2) ∈ D
∂Jh
∂t

+ ξ′1
∂Ju1h
∂ξ1

+ ξ′2
∂Ju2h
∂ξ2

= 0, (ξ1, ξ2) ∈ I

We propose the scheme in skew-symmetric form:

d
dt

Jijhij =−
1
2
ξ′1
∂(Ju1h)
∂ξ1

∣∣∣
ij
− 1

2
ξ′1(Jiju1

ij)
∂h
∂ξ1

∣∣∣
ij
− 1

2
ξ′1
∂(Ju1)

∂ξ1

∣∣∣
ij
hij

− 1
2
ξ′2
∂(Ju2h)
∂ξ2

∣∣∣
ij
− 1

2
ξ′2(Jiju2

ij)
∂h
∂ξ2

∣∣∣
ij
− 1

2
ξ′2
∂(Ju2)

∂ξ2

∣∣∣
ij
hij

− 1
2ωξ1

N

τNjJNjδNjξ
′
1
|u1

Nj| − u1
Nj

2
(hNj − h+

j )− 1
2ωξ1

0

τ0jJ0jδ0jξ
′
1
|u1

0j|+ u1
0j

2
(h0j − h−j )

− 1
2ωξ2

N

τiNJiNδNjξ
′
2
|u2

iN | − u2
iN

2
(hiN − h+

i )− 1
2ωξ2

0

τi0Ji0δi0ξ
′
2
|u2

i0|+ u2
i0

2
(hi0 − h−i )

where h+/−
j/i are the field information from other connecting elements, τij are

the point parameters, and |u1/2
ij | ± u1/2

ij | are called the inflow-outflow operators
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Stability

Choosing τ = 2, one can show that the discrete energy rate of the scheme is
bounded by the prescribed data:

dE(t)
dt

=
d
dt

K∑
k=1

N∑
j=0

N∑
i=0

ωijJ
(k)
ij (h(k)

ij (t))2

= −
K∑

k=1

N∑
j=0

N∑
i=0

ωij

(
(ξ′1)

(k) ∂(J(k)u1(k)
)

∂ξ1

∣∣∣
ij
+ (ξ′2)

(k) ∂(J(k)(u2)(k))

∂ξ2

∣∣∣
ij

)
(h(k)

ij )2

≤ α
K∑

k=1

N∑
j=0

N∑
i=0

ωijJ
(k)
ij (h(k)

ij )

implying

E(t) =
K∑

k=1

N∑
j=0

N∑
i=0

ωijJ
(k)
ij (h(k)

ij (t))2 ≤ eαt
K∑

k=1

N∑
j=0

N∑
i=0

ωijJ
(k)
ij (h(k)

ij (0))2
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Solid Body Rotation
Animation of Wave Propogating on a Spherical Surface
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h-p type Convergence

p type: Error driven down by increasing the number of elements
while the degree of the approximation polynomial N is fixed.
h type: Error driven down by increasing the degree of the
approximation polynomial N while the number of elements is
fixed.
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Error History

The error nearly grow in time (20 periods).
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