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Legendre Pseudospectral Method |
Concepts and Notations
@ Py(x): Legendre polynomial of degree N.
@ Legendre-Gauss-Lobatto (LGL) grid points x;

—l=x<x<xp<---<xy_1 <xy=1, roots of (1 fxz)Pf\,(x)
@ Lagrange interpolation polynomials:

I e 116 gL =]
i(x) = NN+ 1)(x —x)Py(x;)’ i) = 05 = { 0 otherwise

@ Approximation of u(x) defined on [—1, 1] and its derivative '
N

u(x) ~ Iyu(x Z Li(x) u'(x) ~ —INM Z U(x

@ LGL quadrature mtegratlon rule:

/f dx—Zw, f(x;), wi: quadrature weights

i=0
provided that f(x) is a polynomial of degree at most 2N — 1.
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Legendre Pseudospectral Method Il

Exponential Convergency
@ Numerical derivatives at the LGL points:

u'(x;) ~ —INM (%) Zl’ x;)u(x;)

Figure: Errors of the numerical differentiation ' (x;) — 4 Zyu(x;) for
u = sin(kmx) for various values of k.
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Model Wave Problem

Consider u(x, t) satisfying the problem: Define the energy-norm for u as
%Jr@:O xe[-1,1] t>0 1
o Ox E(1) = / 2 (x, 1) d
u(x,0)=f(x) xe[-1,1] t=0 —1

u(—1,1)=g(t) x=-1 t>0.

Then we have
dE(t)y d [' , b Ou b Ou b ou?
o dt/_ludx /_] uatdx /_1 M@xdx /_1 axdx
=’ (—1,0) —*(1,1) = g (1) = (1,1) < g*(1)
implying that

B < E0)+ [ £©)dE<EO0)+1-6, 6= max €0

I i
= /_1u2(x,t)dx§/_1f2(x)dx+t~G

The solution is bounded by the prescribed data.
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Pseudospectral Penalty Method for Wave Problem |
Consider the problem: satisfying the energy estimate

1 1
%+%:0 xel[-1,1],1>0 /_qu(x,t)dxg/_lfz(x)dx—&—t-G
M(X,O):f(X) XE[—I,l]
u(=1,0)=gt) t>0 ngg[%ﬁ]gz(é)

We seek a numerical solution of the form
N
v(x,t) = Z li(x)vi(r) (polynomial of degree N in x)
j=0

satisfying the collocation equations:

Ov(x;, 1) n Ov(x;, 1)
ot Ox

= 7T'§0i~(V0(I)*g(l)), Vi(o) :f(xi)a 1:0717 N

where the boundary condition is imposed weakly and 7 is a
parameter.
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Pseudospectral Penalty Method for Wave Problem |l
Semi-discrete scheme:
ov(xi,t)  Ov(x;,1)
o ox
Observe that!
@ Consistency: Replacing v(x;,t) by u(x;, t) we obtain
Ou(x;, 1) n Ou(x;, 1)
ot ox
independent of 7.
Q@ ast—0
Ov(xg, 1) n Ov(xo, 1)
ot Ox
Q asT—

= —700 (v(—1,1) — g(t)), Vi=0,1,2,...,N

=0, Vi=0,1,2,...,N (recover PDE)

= —7(v(=1,1) —g(r)) = 0 (mimicking PDE)

W(1,1) — g(f) = — (3V(;;>,t) N av(;i,t)

-

D. Funaro and D. Gottlieb, A new method of imposing boundary conditions in
pseudospectral approximations of hyperbolic equations, Math. Comp., 51 (1988)
599-613.

) — 0 (mimicking BC)
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Pseudospectral Penalty Method for Wave Problem |l

Numerical Energy Estimate
We have the scheme:

Ov(x;, 1) n Ov(x;, 1)
ot O0x

Define the discrete energy-norm as

:—’7'(50,'(1)0—g(l‘))7 Vi=0,1,2,...,N

N N 1
Ep(t) = S (0w = 3 V(i  (mimicking E = K R

i=0 i=0

We have the energy rate equation as

dEp(1) .. dv; al Ov(x;, 1) Al
prante ;bizw[ = — §2v(x[,t) o w; — ;27' 0oi w;i vi (vo — g(1))

= / 2v(x, 1) 8vgc,-, 2 dx — 27wovo(vo — g(1))
-1

X

= —v(x, )|, = 2Twovo(vo — g(1)) = —vy + v — 27wovo(vo — &(1))
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Pseudospectral Penalty Method for Wave Problem IV

We obtain the energy rate equation as
dED(I)

dt
Taking 7 = 1/w, we obtain
dED(l)

dt

= —vi + v — 27wove(vo — g(1))

= —vk + v — 20} + 2vog(r) — g2(1) + &(1)

= vy — (0 —8(1)* +&°(1) < &*(1)

implying
t
Eolt) < Eo(0) + [ €(€)d < Eol0) 416, G= max (6)
0 N
or equivalently,

N N 1 1
Z vjz(t)wl- < Zﬁzwﬂrt G mimicking / u? (x, f)dx < / A (x)dx+1-G.
i=0 i=0 -1 -1

The numerical solution is bounded by the prescribed data
independent of N, implying stability.
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Numerical Computations
Semi-discrete scheme:
ov(xi, ov(xi, .
V(g[ J + Vgx ) = —7du (v(—1,1) — g(¥)), Vi=0,1,2,...,N
v(xl-,O) :f(xi)

Introducing the following notations

Vo f (XO) 1 I (XO) ll(x()) Iy (XO)

Vi flx) 0 b)) La) - Iy(a)
V(t) = . 7f = : , €0 = : B D= : .

oy Flxw) 0 L) L) - LoGon)

We can express the scheme as a system of ODEs:

d‘;(tt) = —Dy — Teo(VO(l) - g(t))

v(0) =f

which can be solved by ODE integration methods, for example, Runge-Kutta
methods.
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Convergence Test

Test example: Runge-Kutta 4th order in time

u(x, ) = sin(m(x — 1)) N Error Order
8 | 5.3860e-03 —
12 | 7.7090e-06 | 16.15

u(x,0) = sin(mx)

u(—1,t) = sin(w(=1 —1)) 16 | 2.4318e-06 | 4.01
20 | 9.9604e-07 | 4.00
Legendre method in space 24 | 4.8032e-07 | 4.00

Figure: Left: Computed wave profile at time = 1.00. Right: Maximum errors
lu(x,t) — v;(¢)] for different values of N at time = 1.00.
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Instability and Penalty Boundary Conditions

Scheme:
dv(1)

dr —Dv — Teo(vo(t) — g(1)), v(0)=f

For stability we need 7 > 0.5 /wy.

Figure: Left: Solution profile obtained by 7 = 0.5 /wo.Right: Solution profile
obtained by 7 = 0.47 /wy
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Multidomian Pseudospectral Penalty Formulation

@ Multidomian formulation
@ Complex Physics Problems

e Elastodynamics
e Fluid dynamics
o Electromagnetics
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General Runge-Kutta (RK) Methods

All discretizations of the spatial operator in a PDE, result in a system
of ODEs of the form

du
ditN = Ly(uy(x,1), x, 1),
or in matrix-vector form
du(t
d(t) =L(u(t),t), w=/[uo(t)uy(t)....un(t)]",

L : matrix representation of Ly.

s-stage explicit Runge-Kutta scheme:

ki = L(u", nAt), " = u(ty) The choice of the
i~1 constants a;;, ¢; and b;
ki=L (un + Atz ajk;, (n+ c,-)At) determines the accuracy
and efficiency of the
overall scheme.

j=1

u”'H =u"+ AIZ bik;
i=1
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Fourth-Order Four-Stage RK Methods
The classical fourth-order accurate, four-stage scheme is
ki =L(u", nAr)
k=L <u" + 1Atkl, (n+ ;)At)
ks :L< "t Atkz, (n+ )At)
ky =L (u" + Atks, (n+ 1)Ar)

At
u”“ =u" + ?(kl + 2k2 + 2k3 —|—k4)

@ The Runge-Kutta schemes require more evaluations of L then
the multi-step schemes require to advance a time-step.

@ Unlike the multi-step schemes, the Runge-Kutta methods require
no information from previous time-steps.



Satbility Region of RK Methods |

To study the linear stability of these schemes we consider the linear
scalar equation

du

=

dt .
The general s-stage scheme can be expressed as a truncated Taylor
expansion of the exponential functions

n+1 __ : ()‘ At)i n
i=1
Thus, the scheme is stable for a region of A At for which

L (AAr)
Z( i!t)

i=1

hods for Wave Equations Scheme for Wave Equations on Spherical Surfaces Numerical Results
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Stability Region of RK Methods Il

Figure: Stability regions for Runge-Kutta methods

Necessary condition for stability: All the eigenvalues of L(u, 1) - At
must lie in the stability region for a given method.
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Low-Storage RK Methods (RK3S4)

The s-stage low-storage method is

uy=u"
. ki=ak;,_ + AtL(u;, (n+ cj))At
Viell,... s : {uj-—u]‘] bk (" / )
j = Uj—1 + bjK;
un+1 =u,

@ a;, bj and ¢; are chosen to yield a scheme of order s — 1.
@ For the scheme to be self-starting we require that a; = 0.

@ We need only two storage levels containing k; and u; to advance
the solution.

A four-stage third-order RK scheme is obtained using the constants

a1:0 b]z
by =

Wl
WL W=
oloo WI—

az = —
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Low-Storage RK Methods (RK4S5)

The s-stage low-storage method is

uy=u"

ki = ajkj—y + AtL(u;, (n+ ¢;)Ar)
uj = uj71 + bjkj

! = u

The constants for a five-stage fourth-order Runge-Kutta scheme are

_ __ 1432997174477 _
a =0 by = S5750s0aa1755 €1 =0
Gy — _ 567301805773 5 5161836677717 . _ 1432997174477
2 = 7T 1357537059087 2 = 13612068292357 2 = 9575080441755
_ 2404267990393 __ 1720146321549 _ 2526269341429
a3 = ~ 2016746695238 by = 2000206949498 €3 = 6820363962896
3550918686646 __ 3134564353537 __ 2006345519317
a4 = —3oms01179383 D4 = TsiacT3ions O+ = 334310063776
(e — _ 1275806237668, _ 2277821191437 . _ 2802321613138
5 = 7 842570457699 5 = 14882151754819 5 = 2924317926251
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Low-Storage and Classical RK Methods

Figure: (left) Stability regions for RK4S5

@ The stability region of the RK4S5 method is larger and it is
suitable for advection-diffusion equation.
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Wave Equation on Spherical Surface

Consider the wave equation on a spherical surface:

3/’1
it 0,

h(A, ¢,1=0) = ho(A, 8),

V=Va\ A+ Vs(\,d)p, V-V=0

h: depth field

A, ¢: longitude and latitude
coordinates

\, & unit vector in X and ¢
directions

@ V: surface gradient
V: wind field
ho: initial depth field

Notice that the wave equation can be expressed as

%-‘FV-Vh:O = @+V~Vh+hvv=o = %—&—V-(Vh):o
ot ot ot



ical Methods for Wave Equations Scheme for Wave Equations on Spherical Surfaces Numerical Results
ceo ooo
000

Cubed Sphere Mapping '

Decompose the spherical surface into 6 equal area surfaces and map
them to planar surfaces of a cube.

"Nari, R. D., Thomas, S. J., and Loft, R. D., A discontinuous Galerkin transport
scheme on the cubed sphere, Mon. Wea. Rev., 117, 130-137
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Multidomain Mesh on Spherical Surface
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Wave Equation on Cube Face
On each planar surface a local coordinate (x,x,) is set. The wave
problem on each cube surface takes the form:

% n OJu'h n OJuh B
ot Ox; Oy
h(xl,x%t = 0) = ho(xl,)Q)

T 7
0, 7 <xp,x < 7

@ h = h(x,x,,1): mapped
depth field

@ J: coordinate mapping
jacobian function

@ u', u*: contravarient
components of V
ul = Vxl %
uw = Vx, -V
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Numerical Scheme
Introduce a linear mapping

v=12 x=x(%), (@,x) €D (& &) €[-1,1)
The wave problem defined on D can be mappedto I = [71 1%

Oy g2
We propose the scheme in skew-symmetnc form:
c[llJU ¥ == 751 (;Zjh) i 2 751(‘]’! ")gﬁh 7% {a(ajful)‘,y v
3820 ey 2| - 26290 i,
_ 2;1% TniINjONiEL |MN,|2 uy; (hyj — b7 — 2:0 To,]g,éojglwmoj —h)
— ﬁﬂN-’Nél\lj /W%(hw - h,+) - (jgz TioJiodio QM(/LO —hi)

where h.*./‘ are the field information from other connecting elements, 7; are
the pomt parameters, and |u;/*| + u;/”| are called the inflow-outflow operators
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Stability

Choosing 7 = 2, one can show that the discrete energy rate of the scheme is
bounded by the prescribed data:

dE()  d om0 2

dr _E;I_:O;wﬂv (" (1))
~ 3%y i TN Tl o O TR WA
- ;on;w (“‘) ae 1, @ g, Ui

IA

Q
]~
M=

£
=
=

Z

N N K

K N N
C S w6 WF < eSS S w6 (0))

k=1 j=0 i=0 k=1 j=0 i=0

Numerical Results
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Solid Body Rotation

Animation of Wave Propogating on a Spherical Surface
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h-p type Convergence

@ p type: Error driven down by increasing the number of elements
while the degree of the approximation polynomial N is fixed.

@ h type: Error driven down by increasing the degree of the
approximation polynomial N while the number of elements is
fixed.
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Error History

@ The error nearly grow in time (20 periods).
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