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Potential of loT

The loT has the potential to connect 26 billion Things to the Internet by

2020, in contrast to 7.3 billion units of PCs/notebooks/smartphones
(Peter Middleton, research dire artner Inc.)

Examples: wearable wristban
(ITS), smart cities and industr

evices (ICS), transportation

Smart Environment Smart
Transportation Buildings Monitoring Factories Medical




Data from loT

loT provides a channel for smart sensing and continuously monitoring the
Interesting targets:

vices, machines or
ators, airplane engines,
e analytics, to repair or

Data generated by things: to
infrastructure such as energ
bridges. This data can be us
replace these items before t

Data about things: to monitor n phenomena such as
meteorological patterns, underground pressure during oil extraction, or
patient vital statistics during recovery from a medical procedure.



Data fr/omJnT (cont’d)

+ Sensor/loT data is one o
analytics has becom

* Volume: Vast amou

es now and loT data
ra

ously

* Velocity: Data comi icroseconds

* Variety: Nominal/nu
etc.

* Veracity: High noises, iess

ges, audio, and video,

v



Applying Sensing Technology

Monitoring physical phenomena is an important application

domain for wireless s

Continuous Monit
such as

Sensing
Monitoring in hea
Environmental moni
Sensing spectrum in cognitive networks

ange of applications

Reference by Field Estimation in Wireless Sensor Networks Using Distributed Kriging
(Hern andez-Pe-naloza, 2010






+ A precise c
due to rest

en impractical
bility.
+ Discret of interest

+ Sensor



+ Traditional m nd Inverse

Distance Wel

+ IDW weight

+ OK weight for

Calculate a weighte
to interpolate a surface o

rrounding sensors



Coverage Holes Problem

+ The quality of any interpo-lMced will suffer if sensors are too

sparsely deployed.

Unavoidable obstacl hic formations.

Node failures cau

Environmental f lectronic

components or s

The vast scale an
ocean buoys.

nitored area, e.g.

Reference by Obstacle detection and estimation in wireless sensor networks(Wang,2013)
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e-insensitive SVR



e-insensitive SVR




Smooth Functions



Smooth the & -Insensitive Function

i p, (X, @)= p(x—¢&,a)+ p(-x-¢& a)

\_/

=1 a=5



101 Data Points in

$ Nonlinear SSVR with Kernel:

f (X)) =0.5=*siIn C(];S

)

noise

R < R
exp_ﬂllxl —xJ ”%

X e[—1,1], 101 points

Noise: mean=0
o =0.04
Parameter:

v =50,u=5,&=0.02

Training time : 0.3 sec.



481 Data Points in R° xR

Estimated Function Original Function
Noise : mean=0, o —=0.4
Parameter : v =050, 4u4=1,£=0.5

Mean Absolute Error (MAE) of 49x49 mesh points : 0.1761
Training time : 9.61 sec.



Using Reduced Kernel: K (A, AY) e R?28900=300

Estimated Function Original Function
Noise : mean=0, o —0.4
Parameter : v =00, 4u4=1,&&=0.5

MAE of 49x49 mesh points : 0.0513
Training time : 108 sec.



Using SAME 300 Random Points Out of 28900
| K (A, Au) = R3OO><3OO

Estimated Function Original Function

Noise : mean=0, o —=—0.4
Parameter : v =00, 4u4=1,&&=0.5

MAE of 49x49 mesh points : 0.2529



Uniform Design

A OO0 O WNN = WU

9-point UD Pattern

ul

O = WO NN O BN

13-point UD Pattern
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Uniform Design Sampling

point UD Pattern

13-point UD Pattern

| Synthesizing Sensor Readings via

« Use interpolation methods for
estimating readings at UD points.

» Use different € for real and synthetic
readings.

real ub

21



Reading and Synthetic Estimations

i Global Regression: Combine Real Sensor

= Apply the k-nearest neighbors information to
interpolate the synthetic sensor values (linear
regression, IDW or OK)

= Utilized nonlinear e-SSVR to do global regression
» Use different € values in the e-insensitive function
= Synthetic sensor should use a bigger €



Smart Agriculture demo

NodeID m

S~ W DN

40
80
0

40
40
120

27.4 60.2 00:38:27
23.7 62.4 00:38:27
23.5 62.7 00:38:27
23.7 62.5 00:38:27

Number of data points: 25
Map(Environment) Range:[160x160cm]
Time Stamp: 20 round

Time Interval: 1 minute

Scenario: Simulate anomalous temperatures

23



Auto-Regressive and Moving Average Model

= Storepast T time-stamped temperature data (Assume T =3)

NodeID m

0 27.4 00:38:27
1 0 0 27.9 00:39:27
1 0 0 30.1 00:40:27
1 0 0 31.4 00:41:27
New Features - Use stored temperature readings
Featurel 0 as new additional features

Feature2 0

Feature3 30.1
Feature4 27.9
Feature5 27.4

¢—

The current time

24



Visualization: Interpolation under uniformly
distributed sensors

e-SSVR e-SSVR(Spatial + Temporal(T=5))

IDW Ordinary Kriging

25



+

Sparse Coverage Experiment

e randomly remove 19 nodes to be a validation set
SSVR SSVR(Spatial + Temporal)

IDW Ordinary Kriging

26



Results

MAE RMSE CPU sec.
e-SSVR | 1.9359 2.3923 0.0926
e-SSVR(S+T) | 1.9336 2.3894 0.4399
e-SSVR+0OK | 1.5632 1.983 0.1902
e-SSVR(S+T)+0K | 1.5577 1.9791 0.5429
e-SSVR+IDW | 1.5613 1.9902 0.1424
e-SSVR(S+T)+IDW | 1.5575 1.9861 0.441
OK | 1.6656 2.0998 57.8343
IDW | 1.8652 2.3135 0.0126

27



Visualization of Sparse Coverage

i Experiment

28



-+

Visualization (humidity)

£=SSVR SSVR(Spatial + Temporal(T=5))

IWD Ordinary Kriging

29



Definition of Anomaly (1/3)

e One possible definition of anomaly

An outlier is an observation that deviates so much from other observations as to arouse suspicion that it
was generated by a different mechanism (by Hawkins).

e Michael Jordan is an outlier because of a well-known
qguotation by Charles Barkley: “I am the best basketball
player in the earth, Jordan? He is an alien”.

30



Definition of Anomaly (2/3)

e Our proposed definition of Anomaly

An outlier is an observation that enormously affects model when we add or remove it from the
entire dataset.

e Wilt Chamberlain is an outlier on account of his responsibility
for several rule changes in basketball.

® In order to diminish his dominance, the basketball authorities
set some rules including widening the lane, as well as changes
to rules regarding inbounding the ball and shooting free throws.

31



Definition of Anomaly (3/3)

Conventional anomaly detection approach:
Distance-based
Density-based

Based on our definition, we can have

The perturbation of the principal component with or without an individual instance. E.g., online
oversampling PCA

The data compression rate of with or without a certain portion of data. E.g., Kolmogorov
complexity

All computation has to be done very quickly
Have to be able to evaluate the change of this with or without effect

32



Finding a Needle in a Haystack

e Anomalous behaviors are rare events

e However, when they do occur, their consequences can
be quite dramatic and quite often in a negative sense

e We aim to develop an unsupervised online anomaly
detection mechanism
— Can deal with stream data
— A self-learning front-end model

* Online learning
— An accurate backend model

— Cooperation between above models

“Mining needle in a haystack.
So much hay and so little time”

33



Front-end detection via Dynamic Range Checking
(Single Sensor)

Data read at close intervals are expected to have similar distributions
Aggregate past data by storing mean and standard deviation
Online update values as new readings arrive.

O Anomaly!

Anomaly occurs outside the range
34



Events Detection In Greenhouse



Green House

Fixed node

Mobile node




Project overview

52 Fixed Nodes

| Real-time data inquiry interface

68 Mobile Nodes

M2M Networking (Fixed+ Mobile Nodes)

Visualization interface

Gateway

Objectives

* Scalability (unlimited number of sensor nodes in a single PAN)
* Robustness (dynamic topology, routing and localization)

* Heterogeneous (ZigBee + WiFi + different devices)

* Smart services (lighting, irrigation and inspection)

Automatic Greenhouse



System Architecture
(Projects in NTU CCC Center, 2012-2015)



Back-end Detection via Continuous Monitoring

We keep past T readings map and take the average

If T=5
mean

New map T readings average Difference

~Larger than threshold




Proposed Anomaly Detection Architecture









