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Data Deluge: 資料的洪荒之力



The IoT has the potential to connect 26 billion Things to the Internet by 
2020, in contrast to 7.3 billion units of PCs/notebooks/smartphones 
(Peter Middleton, research director, Gartner Inc.)

Examples: wearable wristbands, home devices (ICS), transportation 
(ITS), smart cities and industry 4.0
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IoT provides a channel for smart sensing and continuously monitoring the 
interesting targets:

Data generated by things: to monitor devices, machines or 
infrastructure such as energy meters, elevators, airplane engines, 
bridges. This data can be used for predictive analytics, to repair or 
replace these items before they break

Data about things: to monitor natural phenomena such as 
meteorological patterns, underground pressure during oil extraction, or 
patient vital statistics during recovery from a medical procedure.
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 Sensor/IoT data is one of the major data resources now and IoT data 
analytics has become a paradigm in the Big Data era

 Volume: Vast amount of sensors collecting data continuously 

 Velocity: Data coming in minutes, seconds and even in microseconds

 Variety: Nominal/numerical types, text/multimedia, images, audio, and video, 
etc.

 Veracity: High noises, inconsistency and incompleteness
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 Monitoring physical phenomena is an important application 
domain for wireless sensor networks.

 Continuous Monitoring is useful in a wide range of applications 
such as 

 Sensing

 Monitoring in health conditions 

 Environmental monitoring 

 Sensing spectrum in cognitive networks

Reference by Field Estimation in Wireless Sensor Networks Using Distributed Kriging 
(Hern´andez-Pe˜naloza,2010)





 A precise continuous monitoring systems is often impractical 
due to restrictions in sensor placement and availability.

 Discrete number of sensors – continuous variable of interest

 Sensors aren’t always deployed uniformly
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 Traditional methods include Ordinary Kriging (OK) and Inverse 
Distance Weighting (IDW)

 IDW weight formula: 

 OK weight formula: 

Calculate a weighted sum of measurements from surrounding sensors 
to interpolate a surface over the region.
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 The quality of any interpolation produced will suffer if sensors are too 
sparsely deployed. 

1) Unavoidable obstacles such as walls and geographic formations. 

2) Node failures caused by power depletion. 

3) Environmental factors (heat, vibration, failure of electronic 
components or software bugs)

4) The vast scale and/or inherent hostility of the monitored area, e.g. 
ocean buoys.

Reference by Obstacle detection and estimation in wireless sensor networks(Wang,2013)
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1. Use a local linear interpolation to create “artificial sensors”, 
scattered uniformly across the region (Uniform Design)

2. With the values of all the sensors, artificial and real, perform 
a global regression to find the surface for the whole region

3. Set different tolerances for the real and artificial sensors (ε-
insensitive smooth support vector regression)



ε-insensitive SVR



ε-insensitive SVR



Smooth Functions
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Original Function

Noise : mean=0 ,

Parameter :

Training time : 9.61 sec.

Mean Absolute Error (MAE) of 49x49 mesh points : 0.1761

Estimated Function

481 Data Points in 
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Noise : mean=0 ,

Estimated Function Original Function

Using Reduced Kernel:

Parameter :

Training time : 108 sec.

MAE of 49x49 mesh points : 0.0513
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Using SAME 300 Random Points Out of 28900 

Noise : mean=0 ,

Estimated Function
Original Function

Parameter :

MAE of 49x49 mesh points : 0.2529
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Uniform Design
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Synthesizing Sensor Readings via 
Uniform Design Sampling

9-point UD Pattern

13-point UD Pattern • Use interpolation methods for 
estimating readings at UD points.

• Use different ε for real and synthetic 

readings.

ε
real UD
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Global Regression: Combine Real Sensor 
Reading and Synthetic Estimations

 Apply the k-nearest neighbors information to 
interpolate the synthetic sensor values (linear 
regression, IDW or OK)

 Utilized nonlinear ε-SSVR to do global regression

 Use different ε values in the ε-insensitive function

 Synthetic sensor should use a bigger ε
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Smart Agriculture demo

NodeID LocationX LocationY Temperature Humidity Time

1 0 0 27.4 60.2 00:38:27

2 40 40 23.7 62.4 00:38:27

3 80 40 23.5 62.7 00:38:27

4 0 120 23.7 62.5 00:38:27

Number of data points: 25
Map(Environment) Range:[160x160cm]
Time Stamp: 20 round
Time Interval: 1 minute
Scenario: Simulate anomalous temperatures 



Auto-Regressive and Moving Average Model

 Store past T time-stamped temperature data (Assume T =3)

NodeID LocationX LocationY Temperature Time

1 0 0 27.4 00:38:27

1 0 0 27.9 00:39:27

1 0 0 30.1 00:40:27

1 0 0 31.4 00:41:27

The current time

New Features

Feature1 0

Feature2 0

Feature3 30.1

Feature4 27.9

Feature5 27.4

• Use stored temperature readings
as new additional features 
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Visualization: Interpolation under uniformly 
distributed sensors

ɛ-SSVR ɛ-SSVR(Spatial + Temporal(T=5)) 

IDW Ordinary Kriging
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Sparse Coverage Experiment

We randomly remove 19 nodes to be a validation set

Ordinary KrigingIDW

SSVR SSVR(Spatial + Temporal) 
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Results
MAE RMSE CPU sec.

ɛ-SSVR 1.9359 2.3923 0.0926

ɛ-SSVR(S+T) 1.9336 2.3894 0.4399

ɛ-SSVR+OK 1.5632 1.983 0.1902

ɛ-SSVR(S+T)+OK 1.5577 1.9791 0.5429

ɛ-SSVR+IDW 1.5613 1.9902 0.1424

ɛ-SSVR(S+T)+IDW 1.5575 1.9861 0.441

OK 1.6656 2.0998 57.8343

IDW 1.8652 2.3135 0.0126
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Visualization of Sparse Coverage 
Experiment
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Visualization (humidity)
ɛ-SSVR SSVR(Spatial + Temporal(T=5)) 

IWD Ordinary Kriging
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Definition of Anomaly (1/3)

 One possible definition of anomaly
- An outlier is an observation that deviates so much from other observations as to arouse suspicion that it 

was generated by a different mechanism (by Hawkins). 
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 Michael Jordan is an outlier because of a well-known 
quotation by Charles Barkley: “I am the best basketball 
player in the earth, Jordan? He is an alien”. 



Definition of Anomaly (2/3)

 Our proposed definition of Anomaly 

- An outlier is an observation that enormously affects model when we add or remove it from the 
entire dataset. 
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 Wilt Chamberlain is an outlier on account of his responsibility 
for several rule changes in basketball. 

 In order to diminish his dominance, the basketball authorities 
set some rules including widening the lane, as well as changes 
to rules regarding inbounding the ball and shooting free throws. 



Definition of Anomaly (3/3)

 Conventional anomaly detection approach:

- Distance-based

- Density-based

 Based on our definition, we can have

- The perturbation of the principal component with or without an individual instance. E.g., online 
oversampling PCA

- The data compression rate of with or without a certain portion of data. E.g., Kolmogorov
complexity

 All computation has to be done very quickly

 Have to be able to evaluate the change of this with or without effect
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Finding a Needle in a Haystack

 Anomalous behaviors are rare events

 However, when they do occur, their consequences can 
be quite dramatic and quite often in a negative sense

 We aim to develop an unsupervised online anomaly 
detection mechanism

– Can deal with stream data

– A self-learning front-end model
• Online learning

– An accurate backend model 

– Cooperation between above models
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“Mining needle in a haystack.  

So much hay and so little time”



Front-end detection via Dynamic Range Checking 
(Single Sensor)

Data read at close intervals are expected to have similar distributions

Aggregate past data by storing mean and standard deviation

Online update values as new readings arrive.
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Anomaly!

Anomaly occurs outside the range



Events Detection in Greenhouse



Green House

Fixed node

Mobile node



Project overview

Automatic Greenhouse

M2M Networking (Fixed+ Mobile Nodes)

52 Fixed Nodes

68 Mobile Nodes

Gateway

Objectives
• Scalability (unlimited number of sensor nodes in a single PAN)
• Robustness (dynamic topology, routing and localization)
• Heterogeneous (ZigBee + WiFi + different devices)
• Smart services (lighting, irrigation and inspection)

Real-time data inquiry interface

Visualization interface



System Architecture
(Projects in NTU CCC Center, 2012-2015)
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Back-end Detection via Continuous Monitoring

We keep past T readings map and take the average 

If  T = 5

mean

－ ＝

New map T readings average Difference

Larger than threshold



Proposed Anomaly Detection Architecture
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