
From Probability Forecast to Probability Distribution Forecast Evaluation

教育訓練

計畫: 105 年度全球預報模式之2 至4週統計後處理系統發展

地點: 中央氣象局

時間: 10月31日 3:00 PM – 5:00 PM

李彥緯 博士

Applying Bradley-Schwartz summary measures to 
evaluate ensemble forecast model outputs 
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Outline

• Deterministic categorical forecasts

• Deterministic continuous forecasts

• Probability forecast for Ensemble forecasts system

• Evaluation measures of probability distribution forecast

• Application in ECMWF S2S data
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Forecasters Questions

• How can the forecasting system be improved?

• How useful are these forecast products?

• Has the forecasting performance of our institution improved?
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What is forecast verification?

• Forecast verification is the exploration and assessment of the quality
of a forecasting system based on a sample or samples of previous 
forecasts and corresponding observations.

• What is meant by quality?

The degree of correspondence between forecasts and observations
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Types of Forecasts
• Categorical

Discrete variables, a finite set of predefined values.

‒ Ordinal: the categories provide a ranking of the data

(𝑌𝐸𝑆: { >,< };𝑁𝑂: {+,−,×,÷ } )

{cold, mild, hot}

‒ Nominal: no natural ordering of the categories 

(𝑁𝑂: {>,<,+,−,×,÷ })

{0, 1} ,{Yes, No}, {Rain, No Rain}

• Continuous

Variables such as mean sea level pressure (MSLP) or temperature over a region.
(𝑌𝐸𝑆: {>,<,+, −,×,÷ })
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Types of Forecasts

• Deterministic:
a specific category or particular value for either a discrete or 
continuous variable

‒ a class attribution, e.g. there will be rain tomorrow
‒ a single number, e.g. the temperature tomorrow

• Probabilistic:
expresses the degree of forecast uncertainty

‒ a probability, e.g. P(rainfall tomorrow) = 0.2
‒ a pdf, e.g. a distribution for temperatures tomorrow
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Deterministic Categorical Forecasts
• Binary Forecasts

Y = {yes, no},  {1, 0}

e.g. it will or will not rain tomorrow 

• Contingency Table
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Simple Scores

• Bias Score:

。B = 1 unbiased (perfect forecast), 

。B < 1 underforecast, B > 1 overforecast

Bias alone conveys no information about skill, because any value can be attained

by changing the decision threshold.
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Simple Scores

• Hit Rate (Probability of Detection) :
The proportion of occurrences that were 

correctly forecast

𝐻 =
𝑎

𝑎 + 𝑐
=

# ℎ𝑖𝑡𝑠

# 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑒𝑣𝑒𝑛𝑡𝑠

。0 ≤ H ≤ 1, best score: H = 1, best score ≠ perfect forecast

A threshold probability of 0, meaning that occurrence is always forecast,

gives H = 1, and a threshold probability of 1, meaning that the event is

never forecast, gives H = 0.
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Simple Scores

• False Alarm Ratio:
A estimate of the conditional probability of a false alarm 

given that occurrence was forecast.

𝐹𝐴𝑅 =
𝑏

𝑎 + 𝑏
=
# 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠

# 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑 𝑒𝑣𝑒𝑛𝑡𝑠

。0 ≤ FAR ≤ 1, best score: FAR = 0, best score ≠ perfect forecast

˙False Alarm Rate (Probability of False Detection) :

𝐹 =
𝑏

𝑏 + 𝑑
=
# 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠

# 𝑛𝑜𝑛 𝑒𝑣𝑒𝑛𝑡𝑠

。0 ≤ F ≤ 1, best score: F = 0 , best score ≠ perfect forecast

。F is analogous to the probability of a Type I error 10



Medical Statistics

• Sensitivity (Hit Rate) (= 1 – Type II Error)= 
𝑎

𝑎+𝑐

• Specificity (=1 – Type I Error) = 
𝑑

𝑏+𝑑
(=1 – False Alarm Rate) 

• Positive predictive value (=1 – False Alarm Ratio) = 
𝑎

𝑎+𝑏

• Negative predictive value = 
𝑑

𝑐+𝑑
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Simple Scores

• Proportion Correct (Accuracy):

𝑃𝐶 =
𝑎 + 𝑑

𝑁
=
# 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑠

# 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑠

‒ Proportion of correct forecasts
‒ 0 ≤ PC ≤ 1, best score: PC = 1, best score = perfect forecast

The optimal threshold probability that maximises PC is 0.5, and hence the PC score can 
always be maximised by forecasting occurrence of the event whenever the observed 
probability of the event exceeds 0.5.
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Limitations of Simple Scores

• How large is a good score?

• Best score not necessarily perfect forecast

• Hedging (Playing) a score
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Generic Form of a Skill Score

• Relative measure of the quality of the forecasting system compared to 
some (usually low-skill) benchmark forecast.

A: accuracy score  (e.g. PC)

Aref: accuracy of reference forecast (e.g. random)

Aperf: accuracy of perfect forecast (the best possible score)

‒ SS = 1 perfect forecast

‒ SS > 0 skillful, better than reference; 

‒ SS < 0 less skillful than reference
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Heidke Skill Score

• Generic Skill Score with A = PC and reference = random forecast

• Heidke Skill Score

based on Accuracy corrected by the number of hits that would be 

expected by chance.
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Deterministic Continuous Forecasts

• Sample, forecast-observation pairs (real valued)

𝑦𝑖 , 𝑜𝑖 , 𝑖 = 1…𝑁

• Sample Means

• Sample Variance
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Simple Error Scores

• Mean Error (Bias):
𝐵 =  𝑦 −  𝑜

• Mean Absolute Error:

• Mean Squared Error (MSE), Root MSE (RMSE):

Sensitive to outliers, dominated by large deviations
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Correlation Coefficient

• Linear Correlation Coefficient

‒ –1 ≤ 𝜌 ≤ 1, 𝜌 = 1 best score

‒ A measure of random error (scatter around best fit)

‒ 𝜌2: fraction of variance in observations explained by best linear model

‒ 𝜌measures potential skill
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Regression Slope

• Linear Regression:

• Linear regression slope

‒ 𝛽 = 1 best score

‒ Deviations of 𝛽 from 1 measure conditional bias

‒𝛽 is a function of correlation and fraction of variances
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MSE Skill Score

‒ skill score with A=MSE and reference = climatological

‒ value range: −∞< SS ≤1; 

‒ perfect forecast: SS = 1; climatology forecast: SS = 0

‒ random forecast with same variance and mean like observations: SS = –1

‒ Always: SS ≤ 𝜌2
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Murphy-Epstein Decomposition

• Decomposition of Skill Score
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Accuracy, Association and Skill

• Accuracy is a measure of the correspondence between individual 
pairs of forecasts and observations. MAE and MSE are measures of 
accuracy.

• Association is the overall strength of the relationship between 
individual pairs of forecasts and observations. The correlation 
coefficient 𝜌 is thus a measure of linear association. 

• Skill scores are used to compare the performance of the forecasts 
with that of a reference forecast such as climatology or persistence.
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Probability Forecast

• A probability statement (Probability Density Function (PDF) or Cumulative

Distribution Function (CDF)) conveys level of uncertainty of a given forecast

• Categorical forecast: Yes/No. Only 100% or 0% probability

• Probabilistic forecast: assigns a probability value between 0 and 100%

• Example: There is a 30% chance of precipitation for today in Taipei City
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Characteristics of Probability Forecasts Verification

• Reliability: How well the a priori predicted probability forecast of an event 
coincides with the a posteriori observed frequency of the event.

• Resolution: How much the forecasts differ from the climatological mean 
probabilities of the event, and the systems gets it right?

• Sharpness: How much do the forecasts differ from the climatological mean 
probabilities of the event?

• Skill: How much better are the forecasts compared to a reference 
prediction system (chance, climatology, persistence,…)?
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Characteristics of Probability Forecasts

• Reliability
‒ A measure of systematic and conditional bias

‒ High reliability if forecast probability and observed frequency agree

25



Characteristics of Probability Forecasts

• Resolution
A measure of the ability to distinguish between situations with characteristically 

different predictands
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Characteristics of Probability Forecasts

• Sharpness
a. A measure of the forecast’s confidence

b. Tendency to forecast high probabilities across the whole value range of the 
predictand

27



The Brier Score

• Brier Score

𝑌𝑖: forecasted event probability

𝑂𝑖: event (1), no-event (0)

 𝑜: climatological event frequency

‒ Measures accuracy

‒ Similar to MSE but with probabilities

‒ 0≤ BS ≤1;  perfect forecast: BS = 0

‒ Climatology forecast:  𝑌𝑖 =  𝑜 ⇒ 𝐵𝑆𝑐𝑙𝑖𝑚 =  𝑜(1 −  𝑜)
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Decomposition of Brier Score
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Brier Skill Score

‒ Generic form of skill scores.

‒ Perfect: BSS = 1, no-skill: BSS ≤ 0

‒ E.g. BSref = BSclim

• Decomposition of Brier Skill Score
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Ensemble Forecast

• Ensemble forecasting methods involve evaluating a set of runs from 
an Numerical Weather Prediction (NWP) model, or different NWP 
models, from the same initial time. 

• Ensemble forecasting is a form of 

Monte Carlo analysis.
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Ensemble Distribution

• Ensemble forecast will form a probability distribution reflecting the 
uncertainty associated with initial and model errors.
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Verification of Ensemble Forecasts

• Mean Square Error (Brier Score)

𝑀𝑆𝐸 𝑦𝑝 = 𝐸 𝐹 y𝑝 𝜉 − 𝑋 𝑦𝑝
2

‒ 𝑦𝑝: the threshold

‒ 𝐹 y𝑝 𝜉 = 𝑃 𝑌 ≤ y𝑝 𝜉 ; ensemble forecast probability

‒ 𝑋 𝑦𝑝 = 1 if {Y ≤ y𝑝} and 𝑋 𝑦𝑝 = 0 if otherwise

• Estimated the forecast probability

𝑓𝑡 𝑦𝑝𝑖 =
1

𝑀𝑡
 𝑗=1
𝑀𝑡 𝐼[𝑦𝑝𝑖 − 𝑧𝑡 𝑗 ]

‒ 𝑧𝑡 𝑗 , 𝑗 = 1,⋯ ,𝑀𝑡: the ensemble forecast at time t
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Brier Skill Score (SS)

SS y𝑝 = 1 −
𝑀𝑆𝐸 𝑦𝑝

𝜎𝑥
2 𝑦𝑝

where σ𝑥
2 y𝑝 = 𝑝(1 − 𝑝)

• Skill Score Decomposition

SS = ρ𝑓𝑥
2 − 𝜌𝑓𝑥 −

𝜎𝑓

𝜎𝑥

2

−
𝜇𝑓 − 𝜇𝑥

𝜎𝑥

2

SS 𝑝 = PS 𝑝 − CB(𝑝) − UB(𝑝)

‒ SS(P): Skill function

‒ PS(p): Potential skill function

‒ CB(p): Conditional bias function

‒ UB(p): Unconditional bias function 
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Average Forecast Quality for Discrete Variable 

• Ranked Probability Score(RPS)
Measures the quadratic distance between forecast and verification probabilities for 

several probability categories k.

RPS =
1

𝑘
 
𝑖=1

𝑘

)𝑀𝑆𝐸(𝑦𝑖

MSE(y): Brier Score in discrete forecast y

• Ranked Probability Skill Score (RPSS)

A measure for skill relative to a reference forecast

RPSS = 1 −
𝑅𝑃𝑆

𝑅𝑃𝑆𝑐
= 1 −

 𝑖=1
𝑘 𝑀𝑆𝐸 𝑦𝑖

 𝑖=1
𝑘 𝜎𝑥

2 𝑦𝑖
= 1 −

 𝑖=1
𝑘 )𝜎𝑥
2 𝑦𝑖 𝑆𝑆(𝑦𝑖

  𝑖=1
𝑘 𝜎𝑥

2 (𝑦𝑖
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Average Forecast Quality for Continuous Variable

• Continuous Ranked Probability Score (CRPS)

CRPS =  
−∞

∞

𝑀𝑆𝐸 𝑦 𝑑𝑦

MSE(y):Brier Score in continuous forecast y

• Continuous Ranked Probability Skill Score (CRPSS)

CRPSS = 1 −
𝐶𝑅𝑃𝑆

𝐶𝑃𝑅𝑆𝑐
=  
−∞

∞

𝑤 𝑦 𝑆𝑆 𝑦 𝑑𝑦 ,w y =
)𝜎𝑥

2(𝑦

 −∞
∞
𝜎𝑥
2(𝑦)𝑑𝑦
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Summary Measures using Probability Thresholds

• Average Brier Score using probability p

MSE =  0
1
𝑀𝑆𝐸 𝑝 𝑑𝑝

• Average Brier Skill Score in probability p

SS𝑝 =  0
1
𝑤 𝑝 𝑆𝑆 𝑝 𝑑𝑝

𝑤 𝑝 =
)𝑝(1−𝑝

 0
1
𝑝 1−𝑝 𝑑𝑝

, the weight function
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Summary Measure_ Mass  𝑄𝑝

• The weighted-average forecast quality function

 𝑄𝑝 =  0
1
𝑤 𝑝 𝑄 𝑝 𝑑𝑝 =  0

1
𝑀 𝑝 𝑑𝑝

M(p) is a mass distribution

‒ Q(p)= SS(p), PS(p), CB(p), UB(p)

• The approximation of 𝑸𝒑

 𝑄𝑝 = 

𝑖=1

𝑘

)𝑤 𝑝𝑖 𝑄(𝑝𝑖

‒ 𝑤 𝑝𝑖 =
)𝑝𝑖(1−𝑝𝑖

 𝑖=1
𝑘 𝑝𝑖(1−𝑝𝑖)

, the weight function

‒ {𝑝𝑖 , 𝑖 = 1,⋯ , 𝑘} be the probability thresholds
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Summary Measure_ Center of Mass  𝑝𝑄

The location of the center of mass for the weighted forecast quality function 

 𝑝𝑄 =
 0
1
𝑝𝑀 𝑝 𝑑𝑝

 0
1
𝑀 𝑝 𝑑𝑝

=
1

 𝑄𝑝
 0
1
𝑝𝑤 𝑝 𝑄 𝑝 𝑑𝑝

• The approximation of  𝒑𝑸

 𝑝𝑄 =
1

 𝑄𝑝
 𝑖=1
𝑘 )𝑝𝑖𝑤 𝑝𝑖 𝑄(𝑝𝑖
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Summary Measure_ Shape Measure γ𝑄𝑝
• The Measure of the distribution of mass M(p) (shape measure) 

γ𝑄𝑝 = 𝑘𝑄𝑝 −
1

20

Where 𝑘𝑄𝑝 =
𝐼𝑄𝑝
 𝑄𝑝

, the radius of gyration;

𝐼𝑄𝑝 is the moment of inertia 

𝐼𝑄𝑝 =  0
1
𝑝2𝑤 𝑝 𝑄 𝑝 𝑑𝑝 −  𝑝𝑄

2  𝑄𝑝

‒ 𝜸𝑸𝒑 < 𝟎 (inverted-V shaped): skill is higher near the center of mass

‒ 𝜸𝑸𝒑 > 𝟎 (V shaped): skill is higher in the extremes

• The approximation of 𝐼𝑄𝑝
𝐼𝑄𝑝 =  𝑖=1

𝑘 𝑝𝑖
2𝑤 𝑝𝑖 𝑄 𝑝𝑖 −  𝑝𝑄

2  𝑄𝑝
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Skill Function and Its Decomposition
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Skill Function and Its Decomposition
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Skill Function and Its Decomposition

43



Skill Function and Its Decomposition
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ECMWF S2S Data

• Variables: T2M, MSLP, TOTPRCP

• Lead Times: 7 Days, 14 Days, 21 Days, 28 Days

• Study Area: (latitude: 0°N-45°N ; longitude:60°E-150°E)

• Study Seasons: 2015 Spring, 2015 Summer, 2015 Fall, 2015-2016 Winter,                     

2016 Spring 
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ECMWF S2S 2015 Spring T2M PS
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ECMWF S2S 2015 Spring T2M PS
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ECMWF S2S 2015 Spring T2M PS
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ECMWF S2S 2015 Spring T2M PS
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ECMWF S2S 2015 Spring T2M PS_  𝑝𝑄
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ECMWF S2S 2015 Spring T2M PS_  𝑝𝑄
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ECMWF S2S 2015 Spring T2M PS_  𝑝𝑄
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ECMWF S2S 2015 Spring T2M PS_  𝑝𝑄

•
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ECMWF S2S 2015 Spring T2M PS_  𝑝𝑄(y)
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ECMWF S2S 2015 Spring T2M PS_  𝑝𝑄(y)
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ECMWF S2S 2015 Spring T2M PS_  𝑝𝑄(y)
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ECMWF S2S 2015 Spring T2M PS_  𝑝𝑄(y)
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ECMWF S2S 2015 Spring T2M PS_  γ𝑄𝑝
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ECMWF S2S 2015 Spring T2M PS_  γ𝑄𝑝
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ECMWF S2S 2015 Spring T2M PS_  γ𝑄𝑝
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ECMWF S2S 2015 Spring T2M PS_  γ𝑄𝑝
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ECMWF S2S 2015 Spring T2M SS
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ECMWF S2S 2015 Spring T2M SS
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ECMWF S2S 2015 Spring T2M SS
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ECMWF S2S 2015 Spring T2M SS

• Variable: T2M
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ECMWF S2S 2015 Spring T2M SS_  𝑝𝑄
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ECMWF S2S 2015 Spring T2M SS_  𝑝𝑄

• Variable: T2M
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ECMWF S2S 2015 Spring T2M SS_  𝑝𝑄
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ECMWF S2S 2015 Spring T2M SS_  𝑝𝑄
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ECMWF S2S 2015 Spring T2M SS_  𝑝𝑄(y)
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ECMWF S2S 2015 Spring T2M SS_  𝑝𝑄(y)
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ECMWF S2S 2015 Spring T2M SS_  𝑝𝑄(y)

72



ECMWF S2S 2015 Spring T2M SS_  𝑝𝑄(y)
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ECMWF S2S 2015 Spring T2M SS_ γ𝑄𝑝
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ECMWF S2S 2015 Spring T2M SS_ γ𝑄𝑝
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ECMWF S2S 2015 Spring T2M SS_ γ𝑄𝑝
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ECMWF S2S 2015 Spring T2M SS_ γ𝑄𝑝
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ECMWF S2S 2015 Spring MSLP PS
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ECMWF S2S 2015 Spring MSLP PS
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ECMWF S2S 2015 Spring MSLP PS
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ECMWF S2S 2015 Spring MSLP PS

• Variable: MSLP
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ECMWF S2S 2015 Spring MSLP SS
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ECMWF S2S 2015 Spring MSLP SS
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ECMWF S2S 2015 Spring MSLP SS
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ECMWF S2S 2015 Spring MSLP SS
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ECMWF S2S 2015 Spring TOTPRCP PS
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ECMWF S2S 2015 Spring TOTPRCP PS
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ECMWF S2S 2015 Spring TOTPRCP PS

88



ECMWF S2S 2015 Spring TOTPRCP PS

89



ECMWF S2S 2015 Spring TOTPRCP SS
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ECMWF S2S 2015 Spring TOTPRCP SS
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ECMWF S2S 2015 Spring TOTPRCP SS
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ECMWF S2S 2015 Spring TOTPRCP SS
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ECMWF S2S 2015 VS 2016 Spring  T2M PS
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ECMWF S2S 2015 VS 2016 Spring  T2M PS
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ECMWF S2S 2015 VS 2016 Spring  T2M PS
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ECMWF S2S 2015 VS 2016 Spring  T2M PS
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ECMWF S2S 2015 VS 2016 Spring  T2M SS

• Variable: T2M
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ECMWF S2S 2015 VS 2016 Spring  T2M SS
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ECMWF S2S 2015 VS 2016 Spring  T2M SS
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ECMWF S2S 2015 VS 2016 Spring  T2M SS
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ECMWF S2S 2015 VS 2016 Spring  MSLP PS
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ECMWF S2S 2015 VS 2016 Spring  MSLP PS
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ECMWF S2S 2015 VS 2016 Spring  MSLP PS
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ECMWF S2S 2015 VS 2016 Spring  MSLP PS
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ECMWF S2S 2015 VS 2016 Spring  MSLP SS
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ECMWF S2S 2015 VS 2016 Spring  MSLP SS
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ECMWF S2S 2015 VS 2016 Spring  MSLP SS
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ECMWF S2S 2015 VS 2016 Spring  MSLP SS
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ECMWF S2S 2015 VS 2016 Spring  TOTPRCP PS
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ECMWF S2S 2015 VS 2016 Spring  TOTPRCP PS
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ECMWF S2S 2015 VS 2016 Spring  TOTPRCP PS
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ECMWF S2S 2015 VS 2016 Spring  TOTPRCP PS
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ECMWF S2S 2015 VS 2016 Spring  TOTPRCP SS
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ECMWF S2S 2015 VS 2016 Spring  TOTPRCP SS
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ECMWF S2S 2015 VS 2016 Spring  TOTPRCP SS
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ECMWF S2S 2015 VS 2016 Spring  TOTPRCP SS
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Summary

• In general, skill in winter is higher than it in summer.

• T2M Skill  >  MSLP Skill >  TOTPRCP Skill

• In 2015 Spring, skills maintained better in Arabian Sea and India. 

• In 2016 Spring, skills maintained better in western Pacific Ocean and South 
China Sea.

• ECMWF had better MSLP skill performance than NCEP in 2016 Spring.
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Thank you for listening.
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NCEP S2S Data

• Variables: T2M, MSLP, TOTPRCP

• Lead Times: 7 Days, 14 Days, 21 Days, 28 Days

• Study Area: (latitude: 0°N-45°N ; longitude:60°E-150°E)

• Study Seasons: 2015 Spring, 2015 Summer, 2015 Fall, 2015-2016 Winter,                     

2016 Spring 
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NCEP S2S 2015 Spring T2M PS

122



NCEP S2S 2015 Spring T2M PS
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NCEP S2S 2015 Spring T2M PS
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NCEP S2S 2015 Spring T2M PS
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NCEP S2S 2015 Spring T2M PS_  𝑝𝑄
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NCEP S2S 2015 Spring T2M PS_  𝑝𝑄
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NCEP S2S 2015 Spring T2M PS_  𝑝𝑄
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NCEP S2S 2015 Spring T2M PS_  𝑝𝑄
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NCEP S2S 2015 Spring T2M PS_  𝑝𝑄(y)
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NCEP S2S 2015 Spring T2M PS_  𝑝𝑄(y)
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NCEP S2S 2015 Spring T2M PS_  𝑝𝑄(y)
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NCEP S2S 2015 Spring T2M PS_  𝑝𝑄(y)
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NCEP S2S 2015 Spring T2M PS_  γ𝑄𝑝
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NCEP S2S 2015 Spring T2M PS_  γ𝑄𝑝
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NCEP S2S 2015 Spring T2M PS_  γ𝑄𝑝
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NCEP S2S 2015 Spring T2M PS_  γ𝑄𝑝
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NCEP S2S 2015 VS 2016 Spring  T2M PS
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NCEP S2S 2015 VS 2016 Spring  T2M PS
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NCEP S2S 2015 VS 2016 Spring  T2M PS
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NCEP S2S 2015 VS 2016 Spring  T2M PS
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NCEP S2S 2015 VS 2016 Spring  MSLP PS
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NCEP S2S 2015 VS 2016 Spring  MSLP PS

143



NCEP S2S 2015 VS 2016 Spring  MSLP PS
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NCEP S2S 2015 VS 2016 Spring  MSLP PS
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NCEP S2S 2015 VS 2016 Spring  TOTPRCP PS
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NCEP S2S 2015 VS 2016 Spring  TOTPRCP PS
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NCEP S2S 2015 VS 2016 Spring  TOTPRCP PS
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NCEP S2S 2015 VS 2016 Spring  TOTPRCP PS
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