The increased Influence of Atlantic Ocean on Pacific Climate after Early 1990s

Jin-Yi Yu Department of Earth System Science University of California, Irvine

Inter-Basin Interactions in Tropics

Indian Ocean Basin Mode 39%

Indian Ocean Dipole 12%

(from Deser et al. 2010)

Eastern-Pacific ENSO

Central-Pacific ENSO

(from Yu and Paek 2016)

Atlantic Equatorial Mode 38%

Atlantic Meridional Mode 25%

(from Deser et al. 2010)

Pacific Ocean 🗲 🗲 Indian Ocean

Indian Ocean Basin Mode 39%

Indian Ocean Dipole 12%

(from Deser et al. 2010)

Eastern-Pacific ENSO

(from Yu and Paek 2016)

Atlantic Equatorial Mode 38%

Atlantic Meridional Mode 25%

(from Deser et al. 2010)

Pacific Ocean 🗲 🗲 Atlantic Ocean

Indian Ocean Basin Mode 39%

Indian Ocean Dipole 12%

(from Deser et al. 2010)

Eastern-Pacific ENSO

Central-Pacific ENSO

(from Yu and Paek 2016)

Atlantic Equatorial Mode 38%

Atlantic Meridional Mode 25%

(from Deser et al. 2010)

Two Types of El Niño = ENSO Diversity

(Yu and Kao 2007; Kao and Yu 2009)

Central-Pacific El Niño (New Type)

EP El Niño and Walker Circulation

Eastern Pacific El Niño

Tropical Atmosphere-Ocean Coupling

CP El Niño and Hadley Circulation

Subtropical Atmosphere-Ocean Coupling

CP-El Niño SST Variations

(Yu et al, 2010)

Subtropcial Precursor and CP ENSO

Generation Mechanisms for CP and EP ENSO

Atlantic Multi-decadal Oscillation (AMO)

- The AMO is identified as a coherent pattern of variability in basin-wide North Atlantic SSTs with a period of 60-80 years.
- AMO has been suggested to be produced by the variation of the Atlantic Meridional Overturning Oscillation (AMOC) or stochastic forcing from the atmosphere.
- AMO can impact global climate through atmospheric waves, oceanic waves, and coupled oceanic-atmospheric propagation.

Determine the Year El Nino Changes Type

(Yu, Lu, and Kim 2012)

NPO Index and Niño Index

(Yu, Lu, and Kim 2012)

Central T. Pacific

atmosphere, but

more related to

eastern tropical

Pacific.

extratropical

After early-1990

Central Pacific SSTA is closely related to **Extratropical** atmosphere (i.e. NPO), but less related to eastern tropical Pacific.

→ CP ENSO

Generation Mechanisms for CP and EP ENSO

Slow Variations in Pacific Meridional Mode

Pacific MM and PDO and AMO

Atlantic Multi-decadal Oscillation and CP El Niño

How did the AMO intensify the Pacific High? (Lyu, Yu, and Paek 2016)

OLR (contour) and Barotropic Stream Function (color)

AMO SST Anomalies

How did the AMO intensify the Pacific High? (Lyu, Yu, and Paek 2016)

OLR (contour) and Barotropic Stream Function (color)

Pacific High intensified

01

15°N

00

1500

Warmer Atlantic -> Stronger Feedback to Pacific

El Nino Became more Biennial after Early 1990s

(Wang, Yu, and Paek 2016; under review)

Gill Type Response to Tropical Heating

Figure 6. (a) Column-mean diabatic heating centred at 90°E, 10°N. The contour interval is 50 W m⁻²; the zero contour is not shown. (b), (c) and (d) show the corresponding perturbation surface pressure and 887 hPa horizontal winds for an integration linearized about a resting basic-state at (b) day 3, (c) day 7 and (d) day 11. The contour interval is 1 hPa.

Figure 7. (a) Column-mean diabatic heating centred at 90°E, 25°N. The contour interval is 50 W m⁻²; the zero contour is not shown. (b), (c) and (d) show the corresponding perturbation surface pressure and 887 hPa horizontal winds for an integration linearized about a resting basic-state at (b) day 3, (c) day 7 and (d) day 11. The contour interval is 1 hPa.

Gill-Type Response Mechanism

NTA warming in boreal spring

- \rightarrow , Enhances Atlantic ITCZ convection
 - Induces a low-level cyclonic atmospheric flow over the eastern Pacific (i.e., Gill type response)
 - Produces a northerly flow on its west flank
- → The northerly flow leads to surface cooling through the enhanced wind speed and cold/dry advection from higher latitudes
- Suppresses Pacific ITCZ convection
- Produces a low-level anticyclonic flow over the western Pacific during the following summer (i.e., Gill type response)
- This anticyclonic flow enhances the northerly flow at its eastern edge, which reinforces the negative precipitation anomaly.
- This coupling maintain and negative precipitation anomalies and generates easterly winds over the western equatorial Pacific
- The winds cool the equatorial Pacific
- May trigger a Central-Pacific type of La Niña event the following winter.

Power Spectra of Monsoon Rainfall Index

(modified from Meehl and Arblaster 2002)

Transition between Indian and Australian Monsoons (during Tropospheric Biennial Oscillation)

Tropospheric Biennial Oscillation (TBO)

(From Meehl 2002)

El Nino Became more Biennial after Early 1990s

(Wang, Yu, and Paek 2016; under review)

Evidence of the early-1990s climate shift in the Pacific

2015/16 vs 1997/98 El Nino / SSTA evolution SST: 2015/16 SST: 1997/98

Why are the 2015/16 and 1997/98 El Nino Different?

(Paek, Yu, and Qian 2016; under review)

AMO and Early-1990s Climate Shift in Pacific

1976 Climate Shift and El Nino Intensity

□ ENSO periodicity also increased from 2-3 years to 4-5 years after the shift.

Pacific Decadal Oscillation

Positive PDO

Negative PDO

- "Pacific Decadal Oscillation" (PDO) is a decadal-scale climate variability that describe an oscillation in northern Pacific sea surface temperatures (SSTs).
- □ PDO is found to link to the decadal variations of ENSO intensity.

ENSO Structures b/a 1976 Climate Shift

The 1976-77 climate shift (PDO+)

- ➔ a eastward shifted in the climatological trade winds
- → caused ENSO wind anomalies to shift more eastward
- → Lengthened the ENSO period by increasing the time required for Rossby waves to reflect from the western boundary

→ Increased ENSO periodicity

- ➔ The increased delay gave the ENSO more time to grow from air-sea interactions
- Strong and longer-period ENSO after the 1976-77 climate shift

AMO and Early-1990s Climate Shift in Pacific

Two Major Modes of Natural Decadal Variability

Possible Generation Mechanisms for AMO

Hasselmann model of climate variability, where a system with a long memory (the ocean) integrates stochastic forcing, thereby transforming a white-noise AMO is induced by the internal variability of the AMOC signal into a red-noise one, thus explaining (without special assumptions) the ubiquitous red-noise signals seen in the climate.

AMO Mechanism: AMOC Variation

The AMOC is characterized by net northward flow of warm water (red) in the upper 1,000 metres of the Atlantic Ocean and southward flow of cold deep water (blue).

A strengthened AMOC

- Produces a heat transport convergence in the North Atlantic Ocean
- ➔Enters the warm phase of the AMO
- The AMO reduces the meridional density gradient over the North Atlantic Ocean
- → Weakens the AMOC
- ➔ A weakened AMOC

AMOC → AMO / CMIP5 Historical Runs

Possible Generation Mechanisms for AMO

Hasselmann model of climate variability, where a system with a long memory (the ocean) integrates stochastic forcing, thereby transforming a white-noise signal into a red-noise one, thus explaining (without special assumptions) the ubiquitous red-noise signals seen in the climate.

AMO Mechanism: Stochastic Forcing

Fig. L Observations and model simulation of the AMO. (**A**, **B**, and **D**) Hegres is on of SS - (shaded). SLP (contours), and surface whichs (vectors) on the stan dardized AMO index (O^{*}16.50^{*}M, SO^{*}W to C^{*}). SLP contours range Form -1.8 hPa to 1.8 hPa, with intervals of CL hPa. (**A**) Observations. (**B**) Multimodel mean of CMIP3 oreindustrial control (also control for y obubled models. (**D**) Multimodel mean of CVIP3 preindustrial control slac-ocean models. Values am of K, hPa, and ms⁻¹ control of standard deviation of the AMO index. (**C**) Observations. The series of annual mean

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.9 0.4 0.5

anomalies of the standard zed AMO index (colored bars) with a 10-year running average superimposed (clack line). The observed SST is from ERSSTV3b, whereas surface winds and SLF are from the NC+P/INCAR (National Centers for Environmental Prediction/National Center for Atmospheric Research) reanalysis. All fields are detrended.

Summary

- There are evidence that the Pacific experiences a climate shift in the early 1990s, which has a close association with the phase change of the Atlantic Multi-decadal oscillation (AMO).
- The Atlantic began to play an active role in influencing the Pacific variability after early 1990s.
- Due to the stronger Atlantic influences, the ENSO changes to the CP type and became biennial after early 1990s.
- The early-1990s climate shift can also be identified in many other climate phenomena in the Pacific.