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Introduction:

Limited Area Models(LAMSs) are often used to achieve high
resolution over a region of interest. Examples are:

@ Regional weather forecast,
@ Simulation of coastal flows and gulf streams.
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Introduction:

Limited Area Models(LAMSs) are often used to achieve high
resolution over a region of interest. Examples are:

@ Regional weather forecast,

@ Simulation of coastal flows and gulf streams.

Challenge: lateral boundary conditions(LBCs)

No physical laws can provide natural boundary conditions at
the lateral boundary. Furthermore, for computational purposes,
we want the lateral boundary conditions to be transparent.
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Figure 1: Transparent property

Ming-Cheng Shiue the Primitive Equations



Difficulty for LBCs

Difficulty:

@ On the computational side
Errors at the lateral boundary will propagate and advect
into the modeled domain and have a major impact inside
the domain.
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Difficulty for LBCs

Difficulty:

@ On the computational side
Errors at the lateral boundary will propagate and advect
into the modeled domain and have a major impact inside
the domain.

@ On the mathematical side
Oliger and Sundstrom, 1978 showed the ill-posedness of a
class of equations of geophysical fluid mechanics
supplemented with any set of local boundary conditions.
This class of equations includes the inviscid Primitive
equations and the Shallow Water equations in the
multi-layer case.
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One Dimensional Transport Equation

The equation:

ou i af)u 0
ot ox
a>0
o x=0 x=L
inflow boundary outflow boundary
u|4—0 given No imposition

Figure 2: Boundary Conditions
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Limited Area models based on the Shallow Water

equations

Equations:
(88[;4_[/2;’4_9?;— _ gB, xe(0,0), t>0,
%+u%+fu:0, (1)
@+u@+@h=0.

\ Ot ox  0Ox

Initial conditions:

u(x,0) = up(x), v(x,0) = w(x), h(x,0) = hy(x),0 < x < L.
(@)
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the Shallow Water model:

(u,v): velocity,
h: the height of water level and
B: the height of the bottom.

wd\r

h

¥
m

Figure 3: The shallow water model
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Characteristic boundary conditions:

Consider the Shallow Water equations linearized around the
simple uniform flow:

U= Uy, V=V, and h= hy.

We set
u=u-+ua,
V=V+7,
h=h+ h.

(LSWES) { # + upy + fii = 0, 3)
771 T Uoi?x + hoty = 0.
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Perturbed Energy

Consider

d [F s g 52
dt/o(quv LB e = 10.8) ~ L, 1),

10,0 = uo(TR(x, 1) + V3(x, t)+h%/32(x, ) + 2gi(x, t)h(x, 1),
u 0 +/ghy .
_ (u 7 >( )

0 Up 0 v ~
VIR
= (Up — v/gho)a?(x, t) + upF2(x, t) + (to + v/gho)72(x; t)

)

EG

vgho 0  u N

where
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B(x,t) = ¥(x, 1),
. _u(x, t) 9z

Flow type:
Subcritical flows: vy — \/ghy < 0
Supercritical flows : ug — v/ghy > 0

For subcritical flows: For supercritical flows:
(L, t) — LRt =o, 6(0,8) — | L ko, 1) =0,
ho ho
7(0,1) = 0, 7(0,1) = 0,
60,8) + | L h(o. 1) = 0. 50,8+ | L h(o, 1) = 0.
ho ho

Ming-Cheng Shiue the Primitive Equations



Linear type of characteristic boundary conditions:

For subcritical flows:

on(L.t) = u(L. )= [ Z(L.1) = o~ /B,

(4 B1(0,8) = v(0, 1) = vp, (4)
71(0,1) = (0, 1) + %ma0=w+wwu
For supercritical flows:
01(0. 1) = (0. 1) — [ 2-h(0,8) = o — v/gho.
0
(5)

(1) 4 B1(0, 1) = v(0,t) = vp,
71(0, 1) = u(0, 1) + %mao=w+¢%&

the Primitive Equations
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Nonlinear type of characteristic boundary conditions:

Inspired by the theoretical work presented in the book of
Benzoni and Serre, we consider the boundary conditions
For subcritical flows:

u(L,t U
oo(L )= 20— JgrT = % — /g,

() < B2(0,1) = v(0,1) = v, (6)
2(0, ) = “(g’ D | Jgho.1) - % 9ho.
For supercritical flows:
02(0,t) = Y20 — /gh0. = 2 /g,
(IV) 4 B2(0,t) = v(0, t) = w, (7)
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Equations for az, 2, 7o

dap ~ Bap +72,0cp  ffB2 — gBx

ot ( 2 )8x - 2 ’
0 0
% + (az +’72)£ = —f(az + 72), (8)
O +(oz24r3’72)@ _ B2 — 9B«
\ Ot 2 ox 2 ’
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One Dimensional Linearized Shallow Water Equations

Subcritical flow (uy — v/gho < 0)

& (outflow) & (inflow) & (inflow) &5 (outflow)
| |
x=0 X=
€ali=0 =10 €1le=2 =0
Figure 4:
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One Dimensional Linearized Shallow Water Equations

Superecritical flow (uy — +/gho > 0)

51 51

(inflow) (outflow)
&2 &2
| |
x=0 x=L
€ila=0=10
&ale—0 =10
Figure 5:
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Numerical schemes: semidiscrete central-upwind

method

We rewrite the SWEs in conservative form as follows:

0 0
5U+ 8—XF(U)—S(U, t, x), (9)

uh hu? + Jgh? fvh — gh.% B
U=1| vh |, F(U)= uvh , S= —fuh .
h uh 0

(10)
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Numerical schemes: semidiscrete central-upwind

method

Finite volume method:

_ 1 Xir1
U(t) = / 2 U(t, x) dx. (11)
AXx Xy
Discretized system:
X, 1

g FUtx.)) = F(U(tx )y S(U(E ).t x)dx
Euj(tH AX - AX (12) ’
Issues:

The approximation of the fluxes F(U)
The approximation of the source terms S(U)
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The approximation of the fluxes

The approximations of the fluxes F(U) at the points x = x;,

are given by
FOU(t x;,.1)) = F (D), (13)
where
a \FU ,)—a ,FU", a,a;
Foo(t) = s FUig) — 8 F /+2)+ +3 I+3 (Ut !
Jt+3 at . —a_, a, —a ' i+s Hi
/+2 /+§ /+2 /+2

(14)
Here U , == pj(t, X

1) and U* = p;(t, XH_%), where
2
p;(t, x) are non-oscillatory linear polynomial reconstructions

pi(t, x) = Uj + sm(t)(x — X)),

where
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Sm(t) := minmod(6 Uf“AX 4. Uj+12;XUj—1 oY _A)L(/’“ ), (15)
with
min(x;), if x; > 0 Vi,
minmod(x1, Xz, - -+ ) := { max(x;), if x; < 0 V1, (16)
0, otherwise ,

and 6 € [1,2]. Finally, the one-sided local speeds of
propagation ajﬁl are given by
2

., = maxCman (5 (U7 ) Aman( 55 (U 1)), 0),

(17)
., = MinOmn(or (U )),Amm(gfj( )),0),

where )\max(gZ(D)) and )\min(ﬁ(fj)) are the largest and

ou
smallest eigenvalues of the differential gZ at the point U = U.
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The approximation of the source terms

Using the midpoint rule for the spatial integral:

X.
ax [ st tx0de~ S(UE ) ). (18)
X

1
2
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ODE system:

ODE system:
d - Fioa(t)—Fi_4(2)
U+ T = 5, (19)
where
Si(t) = S(U(t, %), 1. %)
RK2 method:
([ | Fr . —F7
U-u_ T =2 _gn
At L Ax /7
Ur-Y_ T (20)
At A 17
U[7+1 _ U] + UI
\ ~J 2 ’
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Treatment of boundary conditions

Nonlinear type of characteristic boundary conditions:
For subcritical flows, x = 0,

41 +1 41
aglyl —agy " 3ag 4 +73 4 )O‘Q,z —ag} _ 831 — 9B 4 1)
At 2 AXx 2
For subcritical flows, x = L,
/85—)\—411 _ﬁgM 1 55—;11 _Bg—:\j
- At — +(O‘g,M+1+'Y£M+1)# = _f(ag,Mﬂ_"’Yg,Mﬁ)?
(22)
and
+1 +1 +1
75,M+1 - 7£,M+1 +(ag,M+1 + 37£,M+1 )75,M+1 - 75,/\// _ fﬁg,MJﬂ — 9B% 111
At 2 AX 2 ’
(23)
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For supercritical flows, x = L,

an+1 _ an an+1 o 0/274-1
IR o (g — \/ghe) R (24)
+(3ag,M+1 + ’YQM-H U+ LV gho)o‘g,M+1 - ag,M
4 2 AXx
ol N n o .n
2ut — Yot . /9o V2 mer — V2,u _ 4D gn
+( 4 + 2 ) Ax — 527M+1 —-g X,M+1)

along with (22) and (23).
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Numerical examples:

Subcritical flows:
Initial Conditions:

ho — B(x) + e hy, if k < x < 2k.

u(x,0) = up, v(x,0) = v, h(x,0) = {ho — B(x), otherwise

Here up=0m/s, vp =0m/s, hp = 10*m and ¢ = 0.2. The

bottom topography consists of one hump,

0, otherwise ,

where § =5 x 10°m, x = L/10, and L = 10% m.
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Subcritical Flows: nonlinear type boundary conditions

Simulation:
the height of the free surface h+ B at t = 0 seconds

15000

10000
£
N

5000 1
) .
0 2 4 6 8 10

X:m
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Supercritical Flows:

Initial Conditions:
u(x,0) = up, v(x,0) = v, h(x,0) = hy — B(x).

Here up =450 m/s, vo = 0m/s, hy =5 x 103 m . The bottom
topography consists of one hump,

(x L)
5 4 RSO VN L
= d = — <)) iflx==I<
B(x) = 2+ZCOS( - ), if |x 2\_&,
0, otherwise ,

where § =2.5x 10°m, x = L/10, and L = 10® m.
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Supercritical Flows: nonlinear type boundary

conditions

Simulation:
the height of the free surface h+ B at t = 0 seconds
15000 T T
10000 - 1
E
N
5000
0 .
0 2 4 6 8 10
X:m % 10°
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The Model Equations

The 3D inviscid Primitive Equations :

v + (V- V)v+ v”v@ + fk x V+ lvﬁ = 0, (Momentum equation)
8! 0z 0
gg = —pg, (Hydrostatic equation)
V-v+ gvzv = 0, (Continuity equation)
68-1,‘- +(V-WV)T + vaz — 0, (Thermodynamics equation)
|5 = po(1 — (T — Tp)). (Equation of states)
(25)
v: = (0,V)the horizontal velocity =~ w : the vertical velocity

P the density p : the pressure
V : the horizontal gradient operator T : the temperature
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@ Rousseau, Temam, and Tribbia, 2005 and 2007 - an infinite
set of nonlocal boundary conditions for the 2D inviscid PEs,
well-posedness for the linearized equations, and
computation for the nonlinear equations.
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@ Rousseau, Temam, and Tribbia, 2005 and 2007 - an infinite
set of nonlocal boundary conditions for the 2D inviscid PEs,
well-posedness for the linearized equations, and
computation for the nonlinear equations.

@ Chen, Laminie, Rousseau, Temam and Tribbia 2008,
Chen, Temam and Tribbia 2009: analysis and computation
of the 2.5D case.
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@ Rousseau, Temam, and Tribbia, 2005 and 2007 - an infinite
set of nonlocal boundary conditions for the 2D inviscid PEs,
well-posedness for the linearized equations, and
computation for the nonlinear equations.

@ Chen, Laminie, Rousseau, Temam and Tribbia 2008,
Chen, Temam and Tribbia 2009: analysis and computation
of the 2.5D case.

@ Rousseau, Temam and Tribbia 2008: well-posedness of
the linearized 3D inviscid PEs.

Ming-Cheng Shiue the Primitive Equations



Linearization around the simple uniform stratified flow

The domain under consideration is M = M’ x (0, —L3), where
M =(0,Ly) x (0, Lp).
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Linearization around the simple uniform stratified flow

The domain under consideration is M = M’ x (0, —L3), where
M =(0,Ly) x (0, Lp).
Linearization around the simple uniform stratified flow :
i = Uy, v=0,w=0,
= N? poN? _ dP(2)
T = e N — — = — 0
e TR (po + P)9;
where Up, po, and Ty are positive constants and we introduce
the Brunt—Vaisala (buoyancy) frequency
dp
N2 =998
po 0z
In this work, we assume that N is a positive constant.
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Linearization around the simple uniform stratified flow

The domain under consideration is M = M’ x (0, —L3), where
MI = (0, L1) X (O, Lg)
Linearization around the simple uniform stratified flow :
i = Uy, v=0,w=0,
= N? poN? _ dP(2)
T = e = — = — 0
e TR (po + P)9;
where Up, po, and Ty are positive constants and we introduce
the Brunt—Vaisala (buoyancy) frequency
dp
N2 =998
po 0z
In this work, we assume that N is a positive constant. Setting:

Vo= V+v=yv(xy, 21, p = po+p(z)+p(x,y,21),
W= WJFW:W(vaath)a ﬁ = p0+p(2)+p(X,y,Z,t).

Ming-Cheng Shiue the Primitive Equations



We have the following equations for u, v, w, ¢ = p/po, and

Y =¢;= agTZ

ur + Upty — v + ¢x + B(u, v, w; u) = 0,

Vi + UpVx + fu+ ¢y + fu+ B(u, v, w; v) + fUy = 0,

;= —-Lg=1, (26)
0

UX + Vy + Wz = O,
¢t + UOVQbX —+ N2W+ B(Ua v, Wr¢) = 07

where

B(u,v,w;8) = ubx + v, + wb;, for = u, v, or 1.
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The Linearized system

(ur + Upuy — v + ¢ = 0,

vi + UpVx + fu+ ¢y = 0,

bz =1, (27)
Ux + vy +w; =0,

i + Upthx + N2w = 0.
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The Linearized system

(U + Upuy — fv + ¢ = 0,

vi + UpVx + fu+ ¢y = 0,

bz =, (27)
Ux + vy +w; =0,

Wt + Uptox + N2w = 0.

Separation of variables:

U(Xa%Z» t) = M(Z)U(X7y7 t)v V(Xa%Z» t) = V(Z)\,\/(vaa t),
¢(X7y7 Z, t) = \U(Z)QZ)()va t)7
W(X7y727 t) = W(Z)W(X7y7 t)a ¢(x,y,z, t) = (D(Z)EI(X,}/, t)?
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The Linearized system

(U + Upuy — fv + ¢ = 0,

vi + UpVx + fu+ ¢y = 0,

bz =, (27)
Ux + vy +w; =0,

Wt + Uptox + N2w = 0.

Separation of variables:

U(Xa%Z» t) = M(Z)U(X7y7 t)v V(Xa%Z» t) = V(Z)\,\/(vaa t),
¢(X7y7 Z, t) = \U(Z)QZ)()va t)7
W(X7y727 t) = W(Z)W(X7y7 t)a ¢(x,y,z, t) = (D(Z)EI(X,}/, t)?

For simplicity, we take

U=V =0 W=1.

Ming-Cheng Shiue the Primitive Equations



The Linearized system

From the third and fourth equations in (27), we find that the
corresponding Sturm-Liouville problems are as follows:

U +XU=0W +X2W=0,
with the following natural boundary conditions:

U'(0) = U'(—Lg) = 0, W(0) = W(~Lg) = 0.
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The Linearized system

From the third and fourth equations in (27), we find that the
corresponding Sturm-Liouville problems are as follows:

U + 202U =0, W + 32w =0,
with the following natural boundary conditions:
U'(0) =U'(-L3) =0, W(0) = W(-L3) = 0.

The boundary conditions come from the following top and
bottom boundary conditions:

w(z=0)=w(z=—-L3)=0.
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Normal Mode Expansion in z

We look for the general solutions of (26) in the form:

U v, ¢) Zun Unv Vn, ¢n)(X7.y7 t)7

n>0
ZWn (Wn, ¥n)(X, y, 1).
n>1

where Un(z) and Wy(z) are the eigenfunctions of the
Sturm-Liouville problem associated with linearized equations of
(26) and

(28)
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The barotropic mode

For n = 0, we find that

( 3U0 = 8U0 8¢0 . ) .
¥ + UOW + ox fvo + ” B(u,v,w; u)Up(z)dz =0,
v AT 0do g )
th 07 + dy + fug + ” B(u,v,w; v)Uy(z) dz

—Fonx/ L3 =0,
8Uo 8V0 .
ox Ty 0
\ Yo =wo =0,
(30)
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The higher modes

For n > 1, we find that

ou ou 0 0

o Do — i+ a‘i” + [ Bl wtn(z) 0z =0
OVn oV, 0 0

T3 "+ anin + fup + 8(;;/’1 + ” B(u,v,w;v)Un(z)dz =0,

0
O + Uy iy + N2w, + B(u, v, w; ) Wy(2)dz =0,
ot dx 1
1 1 oJu, OVn

én = _ann’ Wn = _Tn((‘TXJFW)

(31)
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The linearized higher modes

aUn = 8Un 1 awn _

ot T M 0

aVn = 8Vn 1 81/}”

T aa - f —_— =

gt Ty tln—5-%, =0 (32)
Obn . r Obn N2 Oup  Ovp,

at "% e Ty =0

We rewrite (32) in the matrix form as follows:

8Un 6Un 6Un _
o+ En "+ Fa 5 =0. (33)

Here,

Ming-Cheng Shiue the Primitive Equations



The linearized higher modes

The eigenvalues of the matrix E, are

= N - - N
Uo—)\*n, Uo,U0+)\*n~
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The linearized higher modes

The eigenvalues of the matrix E, are

N
Uo,Uo—l-*

U
o7 N\, An

We define n. as the positive integer satisfying the following

relations:

< — <
L3 Uy L3

The mode is subcritical if 1 < n < ng,
The mode is supercritical if n > nc.
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Boundary conditions for the zero mode

The matrix form for the zero mode is

Vi + UpVx + fk X V + Vg + G = 0,
. (35)
divv = 0.
Here,
V= (Uo, Vo)T and
fEL B(u,v,w; u)Uy(z) dz
Go = 0 3 - . (36)
f—/—s B(u,v,w; v)Uy(2) dz + fUy/L3
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Boundary conditions for the zero mode

We propose the following boundary conditions:

= =0, L.
=0, atx=0,L (37)
Vw=0, atx=0, andy =0, L,.
y
’U[):O
Uo—O
’UU—O u0:0
>
1}0:0 X

Figure 6: Boundary conditions for the zero mode

@ The initial boundary problem is not classical.
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Numerical schemes for the zero mode

Let At = T/K, vk ~ v(x, y, kAt), and vk*2 represents an
intermediate value between vk and vAt1, etc.
First Step:

1
At
k41
\' +2 ‘X:O - 07

— 1
+ DoV T2 + fk x VK + Vgk + GE =0, (@8)

Here
Gk:< S 1y Bk, VK W 1K) o (2) dz ) o
0 ff’LsB(uk,vk,wk,vk)uo( )ydz + fUpv/Ls )’
Second Step: (projection method)
vitT _ gkt
At
V.-vit =,

vit! . n=0on oM.

+v(¢k+1 ¢/6) — 0,
(40)
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Neumann Problem

From the Second Step, we can find ¢g+ ! by solving the
Neumann problem

k1 K VY vkt
Agy =Dy + —7—,
° Yoy O (41)
vita
Vet .n= oM’

At
and imposing the compatibility condition

/ pfdxdy = 0.
M/
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Stability Issue

Given the mesh size h = (Ax, Ay), we have the following
stability result:

Lemma 1

(Chen-Shiue-Temam-10) If At and S(h) satisfy the conditions

1 1 1 1
At S*(h) < , At < —, where S?(h) = + ,
M=z =% ) =Tax7 " @y
(42)
then, for 0 < n < N7, we have

N7

Vil < Kas  (AD®D | Vionli < Ka. (43)
k=1
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The subcritical and supercritical modes

We rewrite (31) in the matrix form as follows:

8Un 8Un 8Un

—— A [F— =0. 44
ot tEngx TFig, TG (44)
Here,
U 0 ;1 0 0 0
Un - An 0 0 —1
Un: Vn ,En: o UO O ,Fn: 5 An
n ~N? : N
. 0 U 0 N 0
(49)
and

—fv, + fSH B(u, v, w; u)Un(z)dz
Go=| fun+ [°, B(u,v,w;V)Un(z)dz |.  (46)
2 B(u, v, w; )Wp(2)dz
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Change Variables

Change variables:

Yn Un
€n tUn = N Un Pn
Vo | = Vn N oan | = "N | (47)
Tn % Bn Yn
Up + N N
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Boundary Conditions for the subcritical modes

Boundary conditions for the subcritical modes:

0,y,t) =0,
5”( / ) Oén(xa L27 t) = 07
vn(0,y,t) =0, (48)
Bn(x,0, ) = 0.
77n(L17ya t) =0.
a, =0
gn =0
T = 0
Wy =0
Bn =0 Z

Figure 7: Boundary conditions for the subcritical modes
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Boundary conditions for the supercritical modes

Boundary conditions for the supercritical modes:

O) 7t = 07
€n( / ) Oén(xa L27 t) = 0>
vn(0,y,t) =0, (49)
ﬁn(Xv Oa t) =0.
nn(ovyv t) = 0
a, =0
En =0
v, =0
N, =0
B,=0 L

Figure 8: Boundary conditions for the supercritical modes
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Well-posedness issues for the subcritical and
supercritical modes

@ The boundary conditions (48) and (49) are different from
those proposed in RTTO0S.

@ The well-posedness of the linearized equations will be
studied elsewhere.
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Numerical Schemes for the subcritical modes

Splitting method:
The First Step:

k+1 k+1
U & = ou, "2
B +Gf=0. (50)

The Second Step:

k+3 k-+1

Urlf—H — U, e 8Un+
=0. 1
IN; + Fp By 0 (51)

@ This is a partly implicit scheme.
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Numerical scheme for the subcritical modes

The First Step:

[(rre et R
nviv' nrirj I n7i7j nvi_ 7j k71 j —
ar o TG T =S =2 1,
n
k+3 Vk Vk+; B vk-i—%
nvivj nvivj I nvivj n7/_17j k72 H
—t o Jg————— =8 =2, [+ 1,
At AXx Ml
k+3 k+3 k+d
nn:i:j nnvivj + (D N )nnvl+17/ 77”7”7/’ _ k73 I — 1 /
LU L p— —)——2 2 G =1 ... |
At An Ax k)
andj=1,---,J+1inall cases,
(52)
where
K1 ok2 k,2 -
Sn,i,j’ SnJJ and Sn,,.,j are nonlinear terms.
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Numerical scheme for the subcritical modes

k+%  k+3 k+3
The boundary conditions for ¢, 2, v, 2 andn, 2 are
k+3 K+ K+ .
gn,Oj =% nO/2 = nnllz =0, for0<j</ (53)
The Second Step
( k+l
k+1 3
Unvivj B Un7i7j _ 0
At ’
ki1 k+3 kel ke
nij ~ %nij N ¥nijs1 = Ynij 0, (54)
At An Ay
k1 k3 k1 ok
Bnij = Pnij , NBnij =Pijr _
\ At )\n Ay

The boundary conditions for o%*", g5+ are

{ agﬂ =0, for0 <j<J, (55)

Kk-+1 -
BnIO = for0 < i< /.
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Numerical schemes for the supercritical modes

Splitting method:
The First Step:

k+3 k+3

Eif =&k o N i — it
)5 nl,J n,,j n,l 17! _ k71 | —
ar W) T A TS =2
S K kel e
nzizj B n7i7j I nzizj B n7i717j — k72 | ...
N, +UO—AX *Sn,i,j’liz’ ,I—|-1,
nk+% ok N nk+% - nk+%
n,,j n,i,j +(UO_7) n,,j nvl_1vj — 815713’,: 1’ 7l’
At An AXx s/
\ andi=1,---,J+1inall cases,
(56)
. k+1 k4l k+1
The boundary conditions for §n+2, v,,Jr2 and 77,7+2 are, for
0<j<,
k+l k+l k+l
¢n0j =0 Vnoj =0: noj =0 &)
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Numerical schemes for the supercritical modes

The second Step:

( k+l
= ob
) a./ n?’?] — 0
At ’
:
k-+1 k43 k+1 k-+1
“nij — Ynij _ N %nije1 = %nij g (58)
At An Ay :
1
k41 k+3 k41 k41
anivj B Ianivj _|_ ﬂﬁnvim/ B Ianivj_1 _ 0
At An Ay

The boundary conditions for o%*', g5+ are

(59)

gl =0, for0<i<I.

{agﬂ-zo, for0 <j < J,
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Treatment of the integral of the nonlinear term

In our study, we only need to consider a small number of
modes (< 10), and it is then appropriate to transform these
integrals into the sums of the Fourier coefficients.
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Numerical Simulations in a nested domain

Consider two domains as follows:
The larger domain:

M = (0, L1) X (O, L2) X (—L3,0)
The middle-half domain:
My = (L1/4,3L1/4) x (L2/4,3L2/4) x (—L3,0)

M larger domain with homogeneous BC's

M; middle half domain with non-homog BC's

Figure 9: The larger domain M and the middle half domain Mj.
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Numerical simulations in a nested domain

Strategies:

1. Given the initial and boundary conditions, we perform
simulations on the larger domain.

2. We perform simulations on the middle-half domain using
the initial and boundary conditions provided from Step 1.

3. We consider the data from Step 1 as the true solution,
compare these two data from Step 1 and Step 2 in the
middle-half domain and compute relative errors.
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Numerical Experiments

In the simulation, the initial conditions are given by these scalar

functions:
X 2r . 21wX 2y 4 x 41y
u(x,y,z,0) = L L sin (55— L )cos (== L ) + sin (—— » ) cos ( L2)
cos (72).
=1/ . 2mx. 27X 27X . 2ny
V(X7y7zv O) — T1 <S|n (T1) == 1_1003(“)) Sin (Tz)
Ly (. 5 47X . Arx, . A4my nz
+L—1 sin (T1)+Sm(T1)S'n(T2)COS( H)>’
—4 . A4mx 4 x 47 V4
w(x,y,z,0) = L—(sm (T) + cos(L—))cos(L—y)sm (ﬁ)’
1 21X 1 2y 1 TZ i 2nz
6(x,y,2,0) = Uosm(T)S'”( L )(cos (7gy) —cos (57)
B U 2wy . 2nZ V4
vlx,y.2.0) = TP sin () sin (X (2sin () —sin (55).
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Numerical Experiments

Figure 10: Initial conditions for velocity field
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Numerical Experiments

-0.015 -0.01 -0.005 0 0.005 0.01 0015

Figure 11: Initial conditions for ¢
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Numerical Experiments

-40 -30 -20 -10 0 10 20 30 40

Figure 12: Initial conditions for 1)
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Numerical simulations in the larger domain

Boundary conditions: homogeneous conditions
for the zero mode,

UO(an, t) :07 UO(L17y7 t) :07 (61)
w(0,y,t) =0, w(x,0,t)=0, w(x,Lz,t)=0;

for the subcritical modes, i.e. when 1 < n < ng,
fn(O,ya t) = o’ Vn(oa y» t) - 07 nn(L‘hya t) - 07 (62)
an(x, Lo, 1) =0, Bn(x,0,t)=0;

and for the supercritical modes, i.e. when n > n,
fn(ovya t) = 07 Vn(07 Y, t) = 07 nn(onvv t) = 07 (63)
Oén(X, L2,t):0, 5n(X,0, t):0
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Numerical simulations in the larger domain

The physical parameters:

The length of the domain in x — direction L; = 10° km,
The length of the domain in y — direction L, = 500 km,
The length of the domain in z — direction L3 =10 km

The constant reference velocity Uy = 20m/s,
The Coriolis parameter f=10"%
The Brunt—Vaisala (buoyancy) frequency N = 1072,
The final time T=5x10%s,
The number of modes Nmax = 5.
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Numerical simulations in the larger domain

The numerical parameters:

The number of time steps N+ = 1600,
The number of mesh grids in x Ny = 400,
The number of mesh gridsin y N, = 200,
The number of mesh gridsin z N, = 40.
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Numerical Experiments in the larger domain

Figure 13: Numerical results for velocity field
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Numerical Experiments in the larger domain

Figure 14: Numerical results for ¢
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Numerical Experiments in the larger domain

-500 -400 -300 -200 -100 0 100 200 300 400 500

Figure 15: Numerical results for
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Numerical simulations in the middle-half domain

Boundary conditions:
for the zero mode,

Uo(L1/4,yj, t) = uh(L1 /4, yj, k).

Uo(3L1 /4,}//', tk) = U(l)(3L1 /4,y,-, tk),

Vo(l_1/4,yj, tk) = vé(L1/4,yj, tk), (64)
vo(X, Lo/4, t) = vo(Xi, Lo/4, ),

. Vo(X,',3L2/4, tk) = Vé(X,', 3L2/4, tk).

for the subcritical modes, i.e. when 1 < n < ng,

En(L1/4, ¥}, 1) = €p(L1/4. ¥, t),

Vn(L1 /4,yj, tk) = V,I7(L1 /4,}//', tk),

1n(3L1/4, ¥j, t) = nh(3L1 /4. y;. t), (65)
an(xj,3L2/4,t) = Ozfnl(X,'7 3Ly/4, t),

Bn(xi, Lo/4, tk) = /8//7()(/» Lo/4, tk)v
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Numerical simulations in the middle-half domain

and for the supercritical modes, i.e. when n > n,

En(L1/4,y;, t) = EL(L1 /4, v}, t),

Va(L1/4, j, t) = V(L1 /4, ¥}, t),

nn(L1/4, yj, t) = np(L1/4, j, &), (66)
an(X;,3L2/4, t) = o (i, 3L /4, 1),

Bn(Xi, L2/4, t) = Bp(Xi, L2 /4, t).
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Numerical simulations in the middle-half domain

The numerical parameters:

The number of time steps N+ = 1600,
The number of mesh grids in x Ny = 200,
The number of mesh gridsin y N, = 100,
The number of mesh gridsin z N, = 40.
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Numerical Experiments in the middle-half domain

Figure 16: Numerical results for velocity field
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Numerical Experiments in the middle-half domain

;
4 3 2 1 0 1 2 3 4 5 6
x10"

Figure 17: Numerical results for ¢
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Numerical Experiments in the middle-half domain

-250 -200 -150 -100 -50 0 50 100 150 200 250

Figure 18: Numerical results for
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Volume normalized L? norm L” norm
0.5 15
0.4
1
0.3
0.2
0.5
0.1
0 0
0 1 2 3 4 5 0 1 2 3 4 5
t x10* t x10*
Relative errors in L2 norm Relative errors in L* norm
0.01 0.02
0.008
0.015
0.006
0.01
0.004
0.002 0.005
0 0
0 1 2 3 4 5 0 1 2 3 4 5
t x 10° t x 10"

Figure 19: Top row: evolution of the solution v in the L? and L>
norms. Bottom row: evolution of the relative errors for v in the L2 and
L[> norms.
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Volume normalized L2 norm L* norm

0.5 25
0.4 2
0.3 15
0.2 1
0.1 0.5
o 0
0 1 2 3 4 5 0 1 2 3 4 5
t x 10" t x10*
x10° Relative errors in L2 norm Relative errors in L™ norm
7 0.02
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5 0.015
4
0.01
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2 0.005
1
[9) 0
0 1 2 3 4 5 0 1 2 3 4 5
t x10° t x10°

Figure 20: Top row: evolution of the solution v in the L2 and L>
norms. Bottom row: evolution of the relative errors for v in the L2 and
L[> norms.
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Volume normalized L? norm L” norm
0.025 0.08
0.02
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Figure 21: Top row: evolution of the solution w in the L2 and L>
norms. Bottom row: evolution of the relative errors for w in the L2 and
L[> norms.
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x 10~ Volume normalized L2 norm L” norm
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Figure 22: Top row: evolution of the solution ¢ in the L? and L>
norms. Bottom row: evolution of the relative errors for + in the L2 and
L*° norms.
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Volume normalized L2 norm L norm

150 300
250
100 200
150
50 100
50
o o
(9] 1 2 3 4 5 0 1 2 3 4 5
t x10 t x 10*
x10™* Relative errors in L2 norm 14 107 Relative errors in L” norm
1.2
6 1
0.8
4
0.6
2 0.4
0.2
[9) 9
0 1 2 3 4 0 1 2 3 4 5
t 4 t 4

Figure 23: Top row: evolution of the solution ¢ in L2 and L> norms.
Bottom row: evolution of the relative errors for ¢ in L2 and L> norms.
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Figure 24: mean divergence
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Summary:

@ A new set of nonlocal boundary conditions has been
implemented.

@ We numerically verify that the proposed boundary
conditions, proven suitable for the linearized equations, are
also suitable for the nonlinear case.

@ We numerically verify the transparency property of the
proposed boundary conditions.
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