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Introduction:

Limited Area Models(LAMs) are often used to achieve high
resolution over a region of interest. Examples are:

Regional weather forecast,
Simulation of coastal flows and gulf streams.

Challenge: lateral boundary conditions(LBCs)
No physical laws can provide natural boundary conditions at
the lateral boundary. Furthermore, for computational purposes,
we want the lateral boundary conditions to be transparent.

Figure 1: Transparent property
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Difficulty for LBCs

Difficulty:

On the computational side
Errors at the lateral boundary will propagate and advect
into the modeled domain and have a major impact inside
the domain.
On the mathematical side
Oliger and Sundstrom, 1978 showed the ill-posedness of a
class of equations of geophysical fluid mechanics
supplemented with any set of local boundary conditions.
This class of equations includes the inviscid Primitive
equations and the Shallow Water equations in the
multi-layer case.
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One Dimensional Transport Equation

The equation:
∂u
∂t

+ a
∂u
∂x

= 0.

x=0 x=L
inflow boundary outflow boundary

a>0

u|x=0 given No imposition

Figure 2: Boundary Conditions
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Limited Area models based on the Shallow Water
equations

Equations:

∂u
∂t

+ u
∂u
∂x

+ g
∂h
∂x
− fv = −g

∂B
∂x

, x ∈ (0,L), t > 0,

∂v
∂t

+ u
∂v
∂x

+ fu = 0,

∂h
∂t

+ u
∂h
∂x

+
∂u
∂x

h = 0.

(1)

Initial conditions:

u(x ,0) = u0(x), v(x ,0) = v0(x),h(x ,0) = h0(x),0 < x < L.
(2)
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the Shallow Water model:


(u,v): velocity ,
h: the height of water level and
B: the height of the bottom.

B(x)

h

Figure 3: The shallow water model
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Characteristic boundary conditions:

Consider the Shallow Water equations linearized around the
simple uniform flow:

ū = u0, v̄ = v0, and h̄ = h0.

We set 
u = ū + ũ,
v = v̄ + ṽ ,
h = h̄ + h̃.

(LSWEs)


ũt + u0ũx + gh̃x − f ṽ = 0,
ṽt + u0ṽx + f ũ = 0,
h̃t + u0h̃x + h0ũx = 0.

(3)
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Perturbed Energy

Consider

d
dt

∫ L

0
(ũ2 + ṽ2 +

g
h0

h̃2) dx = I(0, t)− I(L, t),

where

I(x , t) = u0(ũ2(x , t) + ṽ2(x , t) +
g
h0

h̃2(x , t)) + 2gũ(x , t)h̃(x , t),

=
(

ũ ṽ
√

g√
h0

h̃
) u0 0

√
gh0

0 u0 0√
gh0 0 u0


 ũ

ṽ√
g√
h0

h̃

 ,

= (u0 −
√

gh0)α̃2(x , t) + u0β̃
2(x , t) + (u0 +

√
gh0)γ̃2(x , t),

where
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α̃(x , t) =

ũ(x , t)√
2
−
√

g
2h0

h̃(x , t),

β̃(x , t) = ṽ(x , t),

γ̃(x , t) =
ũ(x , t)√

2
+

√
g

2h0
h̃(x , t).

Flow type:
Subcritical flows: u0 −

√
gh0 < 0

Supercritical flows : u0 −
√

gh0 > 0

For subcritical flows: For supercritical flows:
ũ(L, t)−

√
g
h0

h̃(L, t) = 0,

ṽ(0, t) = 0,

ũ(0, t) +

√
g
h0

h̃(0, t) = 0.


ũ(0, t)−

√
g
h0

h̃(0, t) = 0,

ṽ(0, t) = 0,

ũ(0, t) +

√
g
h0

h̃(0, t) = 0.
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Linear type of characteristic boundary conditions:

For subcritical flows:

(I)


α1(L, t) = u(L, t)−

√
g
h0

h(L, t) = u0 −
√

gh0,

β1(0, t) = v(0, t) = v0,

γ1(0, t) = u(0, t) +

√
g
h0

h(0, t) = u0 +
√

gh0.

(4)

For supercritical flows:

(II)


α1(0, t) = u(0, t)−

√
g
h0

h(0, t) = u0 −
√

gh0,

β1(0, t) = v(0, t) = v0,

γ1(0, t) = u(0, t) +

√
g
h0

h(0, t) = u0 +
√

gh0.

(5)
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Nonlinear type of characteristic boundary conditions:

Inspired by the theoretical work presented in the book of
Benzoni and Serre, we consider the boundary conditions
For subcritical flows:

(III)


α2(L, t) =

u(L, t)
2
−
√

gh(L, t) =
u0

2
−
√

gh0,

β2(0, t) = v(0, t) = v0,

γ2(0, t) =
u(0, t)

2
+
√

gh(0, t) =
u0

2
+
√

gh0.

(6)

For supercritical flows:

(IV)


α2(0, t) =

u(0, t)
2
−
√

gh(0, t) =
u0

2
−
√

gh0,

β2(0, t) = v(0, t) = v0,

γ2(0, t) =
u(0, t)

2
+
√

gh(0, t) =
u0

2
+
√

gh0.

(7)
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Equations for α2, β2, γ2



∂α2

∂t
+ (

3α2 + γ2

2
)
∂α2

∂x
=

fβ2 − gBx

2
,

∂β2

∂t
+ (α2 + γ2)

∂β2

∂x
= −f (α2 + γ2),

∂γ2

∂t
+ (

α2 + 3γ2

2
)
∂γ2

∂x
=

fβ2 − gBx

2
.

(8)
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One Dimensional Linearized Shallow Water Equations

x=0 x=L
ξ2|x=0 = 0 ξ1|x=L = 0

ξ2 (inflow)ξ1 (outflow) ξ1 (inflow) ξ2 (outflow)

Subcritical flow (u0 −
√
gh0 < 0)

Figure 4:
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One Dimensional Linearized Shallow Water Equations

x=0 x=L

ξ1

ξ2

ξ1

ξ2

(inflow) (outflow)

Supercritical flow (u0 −
√
gh0 > 0)

ξ1|x=0 = 0

ξ2|x=0 = 0

Figure 5:
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Numerical schemes: semidiscrete central-upwind
method

We rewrite the SWEs in conservative form as follows:

∂

∂t
U +

∂

∂x
F (U) = S(U, t , x), (9)

where

U =

 uh
vh
h

 , F (U) =

 hu2 + 1
2gh2

uvh
uh

 , S =

 fvh − gh ∂
∂x B

−fuh
0

 .

(10)
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Numerical schemes: semidiscrete central-upwind
method

Finite volume method:

Ūj(t) :=
1

∆x

∫ x
j+ 1

2

x
j− 1

2

U(t , x) dx . (11)

Discretized system:

d
dt

Ūj(t)+
F (U(t , xj+ 1

2
))− F (U(t , xj− 1

2
))

∆x
=

∫ x
j+ 1

2
x

j− 1
2

S(U(t , x), t , x)dx

∆x
.

(12)
Issues:
The approximation of the fluxes F (U)
The approximation of the source terms S(U)
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The approximation of the fluxes

The approximations of the fluxes F (U) at the points x = xj± 1
2

are given by
F (U(t , xj+ 1

2
)) ≈ Fj+ 1

2
(t), (13)

where

Fj+ 1
2
(t) :=

a+
j+ 1

2
F (U−

j+ 1
2
)− a−

j+ 1
2
F (U+

j+ 1
2
)

a+
j+ 1

2
− a−

j+ 1
2

+
a+

j+ 1
2
a−

j+ 1
2

a+
j+ 1

2
− a−

j+ 1
2

[U+
j+ 1

2
−U−

j+ 1
2
].

(14)
Here U+

j+ 1
2

:= pj+1(t , xj+ 1
2
) and U−

j+ 1
2

:= pj(t , xj+ 1
2
), where

pj(t , x) are non-oscillatory linear polynomial reconstructions

pj(t , x) = Ūj + sm(t)(x − xj),

where
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sm(t) := minmod(θ
Ūj+1 − Ūj

∆x
,
Ūj+1 − Ūj−1

2∆x
, θ

Ūj − Ūj−1

∆x
), (15)

with

minmod(x1, x2, · · · ) :=


min(xi), if xi > 0 ∀ i ,
max(xi), if xi < 0 ∀ i ,
0, otherwise ,

(16)

and θ ∈ [1,2]. Finally, the one-sided local speeds of
propagation a±

j+ 1
2

are given by

a+
j+ 1

2
:= max(λmax(

∂F
∂U

(U+
j+ 1

2
)), λmax(

∂F
∂U

(U−
j+ 1

2
)),0),

a−
j+ 1

2
:= min(λmin(

∂F
∂U

(U+
j+ 1

2
)), λmin(

∂F
∂U

(U−
j+ 1

2
)),0),

(17)

where λmax(
∂F
∂U

(Ũ)) and λmin(
∂F
∂U

(Ũ)) are the largest and

smallest eigenvalues of the differential
∂F
∂U

at the point U = Ũ.
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The approximation of the source terms

Using the midpoint rule for the spatial integral:

1
∆x

∫ x
j+ 1

2

x
j− 1

2

S(U(t , x), t , x)dx ≈ S(U(t , xj), t , xj). (18)
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ODE system:

ODE system:

d
dt

Ūj(t) +
Fj+ 1

2
(t)− Fj− 1

2
(t)

∆x
= Sj(t), (19)

where
Sj(t) := S(U(t , xj), t , xj).

RK2 method:

U∗j − Un
j

∆t
= −

F n
j+ 1

2
− F n

j− 1
2

∆x
+ Sn

j ,

U∗∗j − U∗j
∆t

= −
F ∗

j+ 1
2
− F ∗

j− 1
2

∆x
+ S∗j ,

Un+1
j =

Un
j + U∗∗j

2
.

(20)
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Treatment of boundary conditions

Nonlinear type of characteristic boundary conditions:
For subcritical flows, x = 0,

αn+1
2,1 − αn

2,1

∆t
+(

3αn
2,1 + γn

2,1

2
)
αn+1

2,2 − αn+1
2,1

∆x
=

fβn
2,1 − gBn

x ,1

2
. (21)

For subcritical flows, x = L,

βn+1
2,M+1 − βn

2,M+1

∆t
+(αn

2,M+1+γn
2,M+1)

βn+1
2,M+1 − βn+1

2,M

∆x
= −f (αn

2,M+1+γn
2,M+1),

(22)
and

γn+1
2,M+1 − γn

2,M+1

∆t
+(
αn

2,M+1 + 3γn
2,M+1

2
)
γn+1

2,M+1 − γn+1
2,M

∆x
=

fβn
2,M+1 − gBn

x ,M+1

2
.

(23)
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For supercritical flows, x = L,

αn+1
2,M+1 − αn

2,M+1

∆t
+ (u0 −

√
gh0)

αn+1
2,M+1 − αn+1

2,M

∆x
(24)

+(
3αn

2,M+1 + γn
2,M+1

4
− u0 +

√
gh0

2
)
αn

2,M+1 − αn
2,M

∆x

+(
αn

2,M+1 − γn
2,M+1

4
+

√
gh0

2
)
γn

2,M+1 − γn
2,M

∆x
= fβn

2,M+1 − gBn
x ,M+1,

along with (22) and (23).
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Numerical examples:

Subcritical flows:
Initial Conditions:

u(x ,0) = u0, v(x ,0) = v0, h(x ,0) =

{
h0 − B(x) + εh0, if κ ≤ x ≤ 2κ,
h0 − B(x), otherwise .

Here u0 = 0 m/s , v0 = 0 m/s , h0 = 104 m and ε = 0.2. The
bottom topography consists of one hump,

B(x) =


δ

2
+
δ

2
cos (

π(x − L
2

)

κ
), if |x − L

2
| ≤ κ,

0, otherwise ,

where δ = 5× 103 m, κ = L/10, and L = 106 m.
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Subcritical Flows: nonlinear type boundary conditions

Simulation:

0 2 4 6 8 10

x 10
5

0

5000

10000

15000
 the height of the free surface h+ B at t = 0 seconds

x:m

z:
m
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Supercritical Flows:

Initial Conditions:

u(x ,0) = u0, v(x ,0) = v0, h(x ,0) = h0 − B(x).

Here u0 = 450 m/s , v0 = 0 m/s , h0 = 5× 103 m . The bottom
topography consists of one hump,

B(x) =


δ

2
+
δ

2
cos (

π(x − L
2

)

κ
), if |x − L

2
| ≤ κ,

0, otherwise ,

where δ = 2.5× 103 m, κ = L/10, and L = 106 m.
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Supercritical Flows: nonlinear type boundary
conditions

Simulation:

0 2 4 6 8 10

x 10
5

0

5000

10000

15000
 the height of the free surface h+ B at t = 0 seconds

x:m

z:
m
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The Model Equations

The 3D inviscid Primitive Equations :

∂ṽ
∂t

+ (ṽ · ∇)ṽ + w̃
∂ṽ
∂z

+ f k× ṽ +
1
ρ0
∇p̃ = 0, (Momentum equation)

∂p̃
∂z

= −ρ̃g, (Hydrostatic equation)

∇ · ṽ +
∂w̃
∂z

= 0, (Continuity equation)

∂T̃
∂t

+ (ṽ · ∇)T̃ + w̃
∂T̃
∂z

= 0, (Thermodynamics equation)

ρ̃ = ρ0(1− α(T̃ − T0)). (Equation of states)
(25)

ṽ : = (ũ, ṽ) the horizontal velocity w̃ : the vertical velocity
ρ̃ : the density p̃ : the pressure
∇ : the horizontal gradient operator T̃ : the temperature
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Previous Work

Rousseau, Temam, and Tribbia, 2005 and 2007 - an infinite
set of nonlocal boundary conditions for the 2D inviscid PEs,
well-posedness for the linearized equations, and
computation for the nonlinear equations.
Chen, Laminie, Rousseau, Temam and Tribbia 2008,
Chen, Temam and Tribbia 2009: analysis and computation
of the 2.5D case.
Rousseau, Temam and Tribbia 2008: well-posedness of
the linearized 3D inviscid PEs.
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Linearization around the simple uniform stratified flow

The domain under consideration isM =M′ × (0,−L3), where
M′ = (0,L1)× (0,L2).
Linearization around the simple uniform stratified flow :

ū = Ū0, v̄ = 0, w̄ = 0,

T̄ =
N2

αg
z, ρ̄ = −ρ0N2

g
z,

dP̄(z)

dz
= −(ρ0 + ρ̄)g,

where Ū0, ρ0, and T0 are positive constants and we introduce
the Brunt–Väisälä (buoyancy) frequency

N2 =
g
ρ0

d ρ̄
dz
.

In this work, we assume that N is a positive constant. Setting:

ũ = ū + u(x , y , z, t),
ṽ = v̄ + v = v(x , y , z, t),
w̃ = w̄ + w = w(x , y , z, t),

T̃ = T0 + T̄ (z) + T (x , y , z, t)
ρ̃ = ρ0 + ρ̄(z) + ρ(x , y , z, t),
p̃ = p0 + p̄(z) + p(x , y , z, t).
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ū = Ū0, v̄ = 0, w̄ = 0,

T̄ =
N2

αg
z, ρ̄ = −ρ0N2

g
z,

dP̄(z)

dz
= −(ρ0 + ρ̄)g,
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where Ū0, ρ0, and T0 are positive constants and we introduce
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System

We have the following equations for u, v , w , φ = p/ρ0, and
ψ = φz = αgT :

ut + Ū0ux − fv + φx + B(u, v ,w ; u) = 0,
vt + Ū0vx + fu + φy + fu + B(u, v ,w ; v) + f Ū0 = 0,

φz = − ρ

ρ0
g = ψ,

ux + vy + wz = 0,
ψt + Ū0ψx + N2w + B(u, v ,w ;ψ) = 0,

(26)

where

B(u, v ,w ; θ) = uθx + vθy + wθz , for θ = u, v , or ψ.
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The Linearized system



ut + Ū0ux − fv + φx = 0,
vt + Ū0vx + fu + φy = 0,
φz = ψ,

ux + vy + wz = 0,
ψt + Ū0ψx + N2w = 0.

(27)

Separation of variables:
u(x , y , z, t) = U(z)û(x , y , t), v(x , y , z, t) = V(z)v̂(x , y , t),
ψ(x , y , z, t) = Ψ(z)ψ̂(x , y , t),
w(x , y , z, t) =W(z)ŵ(x , y , t), φ(x , y , z, t) = Φ(z)û(x , y , t),

For simplicity, we take

U = V = Φ, W = Ψ.

Ming-Cheng Shiue the Primitive Equations



The Linearized system
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w(x , y , z, t) =W(z)ŵ(x , y , t), φ(x , y , z, t) = Φ(z)û(x , y , t),

For simplicity, we take

U = V = Φ, W = Ψ.
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The Linearized system



ut + Ū0ux − fv + φx = 0,
vt + Ū0vx + fu + φy = 0,
φz = ψ,

ux + vy + wz = 0,
ψt + Ū0ψx + N2w = 0.

(27)

Separation of variables:
u(x , y , z, t) = U(z)û(x , y , t), v(x , y , z, t) = V(z)v̂(x , y , t),
ψ(x , y , z, t) = Ψ(z)ψ̂(x , y , t),
w(x , y , z, t) =W(z)ŵ(x , y , t), φ(x , y , z, t) = Φ(z)û(x , y , t),

For simplicity, we take

U = V = Φ, W = Ψ.
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The Linearized system

From the third and fourth equations in (27), we find that the
corresponding Sturm-Liouville problems are as follows:

U ′′ + λ2U = 0, W ′′ + λ2W = 0,

with the following natural boundary conditions:

U ′(0) = U ′(−L3) = 0, W(0) =W(−L3) = 0.

The boundary conditions come from the following top and
bottom boundary conditions:

w(z = 0) = w(z = −L3) = 0.
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Normal Mode Expansion in z

We look for the general solutions of (26) in the form:
(u, v , φ) =

∑
n≥0

Un(z)(un, vn, φn)(x , y , t),

(w , ψ) =
∑
n≥1

Wn(z)(wn, ψn)(x , y , t).
(28)

where Un(z) andWn(z) are the eigenfunctions of the
Sturm-Liouville problem associated with linearized equations of
(26) and

λn =
nπ
L3
,

Wn(z) =

√
2
L3

sin (λnz),Un(z) =

√
2
L3

cos (λnz),n ≥ 1,

U0(z) =
1√
L3
.

(29)
Ming-Cheng Shiue the Primitive Equations



The barotropic mode

For n = 0, we find that

∂u0

∂t
+ Ū0

∂u0

∂x
+
∂φ0

∂x
− fv0 +

∫ 0

−L3

B(u, v ,w ; u)U0(z) dz = 0,

∂v0

∂t
+ Ū0

∂v0

∂x
+
∂φ0

∂y
+ fu0 +

∫ 0

−L3

B(u, v ,w ; v)U0(z) dz

+f Ū0
√

L3 = 0,
∂u0

∂x
+
∂v0

∂y
= 0,

ψ0 = w0 = 0,
(30)
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The higher modes

For n ≥ 1, we find that

∂un

∂t
+ Ū0

∂un

∂x
− fvn +

∂φn

∂x
+

∫ 0

−L3

B(u, v ,w ; u)Un(z) dz = 0,

∂vn

∂t
+ Ū0

∂vn

∂x
+ fun +

∂φn

∂y
+

∫ 0

−L3

B(u, v ,w ; v)Un(z) dz = 0,

∂ψn

∂t
+ Ū0

∂ψn

∂x
+ N2wn +

∫ 0

−L3

B(u, v ,w ;ψ)Wn(z) dz = 0,

φn = − 1
λn
ψn, wn = − 1

λn
(
∂un

∂x
+
∂vn

∂y
).

(31)
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The linearized higher modes



∂un

∂t
+ Ū0

∂un

∂x
− fvn −

1
λn

∂ψn

∂x
= 0,

∂vn

∂t
+ Ū0

∂vn

∂x
+ fun −

1
λn

∂ψn

∂y
= 0,

∂ψn

∂t
+ Ū0

∂ψn

∂x
− N2

λn
(
∂un

∂x
+
∂vn

∂y
) = 0.

(32)

We rewrite (32) in the matrix form as follows:
∂Un

∂t
+ En

∂Un

∂x
+ Fn

∂Un

∂y
= 0. (33)

Here,

Un =

 un
vn
ψn

 ,En =


Ū0 0

−1
λn

0 Ū0 0
−N2

λn
0 Ū0

 ,Fn =


0 0 0

0 0
−1
λn

0
−N2

λn
0

 .

(34)Ming-Cheng Shiue the Primitive Equations



The linearized higher modes

The eigenvalues of the matrix En are

Ū0 −
N
λn
, Ū0, Ū0 +

N
λn
.

We define nc as the positive integer satisfying the following
relations:

ncπ

L3
<

N
Ū0

<
(nc + 1)π

L3
.

The mode is subcritical if 1 ≤ n ≤ nc ,

The mode is supercritical if n > nc .
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Boundary conditions for the zero mode

The matrix form for the zero mode is{
vt + Ū0vx + f k× v + Oφ0 + G0 = 0,
divv = 0.

(35)

Here,
v = (u0, v0)T and

G0 =

( ∫ 0
−L3

B(u, v ,w ; u)U0(z) dz∫ 0
−L3

B(u, v ,w ; v)U0(z) dz + f Ū0
√

L3

)
, (36)
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Boundary conditions for the zero mode

We propose the following boundary conditions:{
u0 = 0, at x = 0, L1.

v0 = 0, at x = 0, and y = 0, L2.
(37)

x

y

v0 = 0

v0 = 0

u0 = 0
u0 = 0

v0 = 0

Figure 6: Boundary conditions for the zero mode

Remark 1
The initial boundary problem is not classical.
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Numerical schemes for the zero mode

Let ∆t = T/K , vk ≈ v(x , y , k∆t), and vk+ 1
2 represents an

intermediate value between vk and vk+1, etc.
First Step:

vk+ 1
2 − vk

∆t
+ Ū0v

k+ 1
2

x + fk× vk +∇φk
0 + Gk

0 = 0,

vk+ 1
2 |x=0 = 0,

(38)

Here

Gk
0 =

( ∫ 0
−L3

B(uk , vk ,wk ; uk )U0(z) dz∫ 0
−L3

B(uk , vk ,wk ; vk )U0(z) dz + f Ū0
√

L3

)
, (39)

Second Step: (projection method)
vk+1 − vk+ 1

2

∆t
+∇(φk+1

0 − φk
0) = 0,

∇ · vk+1 = 0,

vk+1 · n = 0 on ∂M′.

(40)
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Neumann Problem

From the Second Step, we can find φk+1
0 by solving the

Neumann problem
4φk+1

0 = 4φk
0 +
∇ · vk+ 1

2

∆t
,

∇φk+1
0 · n =

vk+ 1
2

∆t
, ∂M′.

(41)

and imposing the compatibility condition∫
M′

φk+1
0 dx dy = 0.
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Stability Issue

Given the mesh size h = (∆x ,∆y), we have the following
stability result:

Lemma 1

(Chen-Shiue-Temam-10) If ∆t and S(h) satisfy the conditions

∆t S4(h) ≤ 1
c2

1K4
, ∆t ≤ 1

8
, where S2(h) =

1
(∆x)2 +

1
(∆y)2 ,

(42)
then, for 0 ≤ n ≤ NT , we have

|vn
h|2h ≤ K4, (∆t)3

NT∑
k=1

|∇hφ
k
h|2h ≤ K4. (43)
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The subcritical and supercritical modes

We rewrite (31) in the matrix form as follows:

∂Un

∂t
+ En

∂Un

∂x
+ Fn

∂Un

∂y
+ Gn = 0. (44)

Here,

Un =

 un
vn
ψn

 ,En =


Ū0 0

−1
λn

0 Ū0 0
−N2

λn
0 Ū0

 ,Fn =


0 0 0

0 0
−1
λn

0
−N2

λn
0

 ,

(45)
and

Gn =

 −fvn +
∫ 0
−H B(u, v ,w ; u)Un(z)dz

fun +
∫ 0
−H B(u, v ,w ; v)Un(z)dz∫ 0

−H B(u, v ,w ;ψ)Wn(z)dz

 . (46)
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Change Variables

Change variables:

 ξn
vn
ηn

 =


un −

ψn

N
vn

un +
ψn

N

 ,

 un
αn
βn

 =


un

vn +
ψn

N
vn −

ψn

N

 . (47)
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Boundary Conditions for the subcritical modes

Boundary conditions for the subcritical modes:
ξn(0, y , t) = 0,
vn(0, y , t) = 0,
ηn(L1, y , t) = 0.

{
αn(x ,L2, t) = 0,
βn(x ,0, t) = 0.

(48)

αn = 0

βn = 0

ηn = 0

ξn = 0

vn = 0

x

y

Figure 7: Boundary conditions for the subcritical modes
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Boundary conditions for the supercritical modes

Boundary conditions for the supercritical modes:
ξn(0, y , t) = 0,
vn(0, y , t) = 0,
ηn(0, y , t) = 0.

{
αn(x ,L2, t) = 0,
βn(x ,0, t) = 0.

(49)

αn = 0

βn = 0

ηn = 0

ξn = 0

vn = 0

x

y

Figure 8: Boundary conditions for the supercritical modes
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Well-posedness issues for the subcritical and
supercritical modes

Remark 2
The boundary conditions (48) and (49) are different from
those proposed in RTT08.
The well-posedness of the linearized equations will be
studied elsewhere.
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Numerical Schemes for the subcritical modes

Splitting method:
The First Step:

U
k+ 1

2
n − Uk

n
∆t

+ En
∂U

k+ 1
2

n

∂x
+ Gk

n = 0. (50)

The Second Step:

Uk+1
n − U

k+ 1
2

n

∆t
+ Fn

∂Uk+1
n

∂y
= 0. (51)

Remark 3

This is a partly implicit scheme.
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Numerical scheme for the subcritical modes

The First Step:

ξ
k+ 1

2
n,i,j − ξk

n,i,j

∆t
+ (Ū0 +

N
λn

)
ξ

k+ 1
2

n,i,j − ξ
k+ 1

2
n,i−1,j

∆x
= Sk ,1

n,i,j , i = 2, · · · , I + 1,

v
k+ 1

2
n,i,j − vk

n,i,j

∆t
+ Ū0

v
k+ 1

2
n,i,j − v

k+ 1
2

n,i−1,j

∆x
= Sk ,2

n,i,j , i = 2, · · · , I + 1,

η
k+ 1

2
n,i,j − ηk

n,i,j

∆t
+ (Ū0 −

N
λn

)
η

k+ 1
2

n,i+1,j − η
k+ 1

2
n,i,j

∆x
= Sk ,3

n,i,j , i = 1, · · · , I,
and j = 1, · · · , J + 1 in all cases,

(52)
where

SK ,1
n,i,j , Sk ,2

n,i,j and Sk ,2
n,i,j are nonlinear terms.
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Numerical scheme for the subcritical modes

The boundary conditions for ξ
k+ 1

2
n , v

k+ 1
2

n and η
k+ 1

2
n are

ξ
k+ 1

2
n,0,j = 0, v

k+ 1
2

n,0,j = 0, η
k+ 1

2
n,I,j = 0, for 0 ≤ j ≤ J, (53)

The Second Step

uk+1
n,i,j − u

k+ 1
2

n,i,j

∆t
= 0,

αk+1
n,i,j − α

k+ 1
2

n,i,j

∆t
− N
λn

αk+1
n,i,j+1 − αk+1

n,i,j

∆y
= 0,

βk+1
n,i,j − β

k+ 1
2

n,i,j

∆t
+

N
λn

βk+1
n,i,j − βk+1

n,i,j−1

∆y
= 0

(54)

The boundary conditions for αk+1
n , βk+1

n are{
αk+1

n,I,j = 0, for 0 ≤ j ≤ J,

βk+1
n,i,0 = 0, for 0 ≤ i ≤ I.

(55)
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Numerical schemes for the supercritical modes

Splitting method:
The First Step:

ξ
k+ 1

2
n,i,j − ξk

n,i,j

∆t
+ (Ū0 +

N
λn

)
ξ

k+ 1
2

n,i,j − ξ
k+ 1

2
n,i−1,j

∆x
= Sk ,1

n,i,j , i = 2, · · · , I + 1,

v
k+ 1

2
n,i,j − vk

n,i,j

∆t
+ Ū0

v
k+ 1

2
n,i,j − v

k+ 1
2

n,i−1,j

∆x
= Sk ,2

n,i,j , i = 2, · · · , I + 1,

η
k+ 1

2
n,i,j − ηk

n,i,j

∆t
+ (Ū0 −

N
λn

)
η

k+ 1
2

n,i,j − η
k+ 1

2
n,i−1,j

∆x
= Sk ,3

n,i,j , i = 1, · · · , I,
and i = 1, · · · , J + 1 in all cases ,

(56)

The boundary conditions for ξ
k+ 1

2
n , v

k+ 1
2

n and η
k+ 1

2
n are, for

0 ≤ j ≤ J,

ξ
k+ 1

2
n,0,j = 0, v

k+ 1
2

n,0,j = 0, η
k+ 1

2
n,0,j = 0. (57)
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Numerical schemes for the supercritical modes

The second Step:

uk+1
n,i,j − u

k+ 1
2

n,i,j

∆t
= 0,

αk+1
n,i,j − α

k+ 1
2

n,i,j

∆t
− N
λn

αk+1
n,i,j+1 − αk+1

n,i,j

∆y
= 0,

βk+1
n,i,j − β

k+ 1
2

n,i,j

∆t
+

N
λn

βk+1
n,i,j − βk+1

n,i,j−1

∆y
= 0

(58)

The boundary conditions for αk+1
n , βk+1

n are{
αk+1

n,I,j = 0, for 0 ≤ j ≤ J,

βk+1
n,i,0 = 0, for 0 ≤ i ≤ I.

(59)
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Treatment of the integral of the nonlinear term

In our study, we only need to consider a small number of
modes (≤ 10), and it is then appropriate to transform these
integrals into the sums of the Fourier coefficients.
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Numerical Simulations in a nested domain

Consider two domains as follows:
The larger domain:

M = (0,L1)× (0,L2)× (−L3,0)

The middle-half domain:

M1 = (L1/4,3L1/4)× (L2/4,3L2/4)× (−L3,0)

M1 middle half domain with non-homog BC’s

M larger domain with homogeneous BC’s

Figure 9: The larger domainM and the middle half domainM1.
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Numerical simulations in a nested domain

Strategies:

1. Given the initial and boundary conditions, we perform
simulations on the larger domain.

2. We perform simulations on the middle-half domain using
the initial and boundary conditions provided from Step 1.

3. We consider the data from Step 1 as the true solution,
compare these two data from Step 1 and Step 2 in the
middle-half domain and compute relative errors.
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Numerical Experiments

In the simulation, the initial conditions are given by these scalar
functions:

u(x , y , z,0) =
x
L1

2π
L2

sin (
2πx
L1

) cos (
2πy
L2

) + sin (
4πx
L1

) cos (
4πy
L2

)

cos (
πz
H

),

v(x , y , z,0) =
−1
L1

(
sin (

2πx
L1

) +
2πx
L1

cos (
2πx
L1

)

)
sin (

2πy
L2

)

+
L2

L1

(
sin2 (

4πx
L1

) + sin (
4πx
L1

) sin (
4πy
L2

) cos (
πz
H

)

)
,

w(x , y , z,0) =
−4H

L1
(sin (

4πx
L1

) + cos (
4πx
L1

)) cos (
4πy
L2

) sin (
πz
H

),

φ(x , y , z,0) = Ū0 sin (
2πx
L1

) sin (
2πy
L2

)(cos (
πz
H

)− cos (
2πz
H

)),

ψ(x , y , z,0) =
πŪ0

H
sin (

2πx
L1

) sin (
2πy
L2

)(2 sin (
2πz
H

)− sin (
πz
H

)).

(60)
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Numerical Experiments

Figure 10: Initial conditions for velocity field
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Numerical Experiments

Figure 11: Initial conditions for φ
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Numerical Experiments

Figure 12: Initial conditions for ψ
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Numerical simulations in the larger domain

Boundary conditions: homogeneous conditions
for the zero mode,{

u0(0, y , t) = 0, u0(L1, y , t) = 0,
v0(0, y , t) = 0, v0(x ,0, t) = 0, v0(x ,L2, t) = 0;

(61)

for the subcritical modes, i.e. when 1 ≤ n < nc ,{
ξn(0, y , t) = 0, vn(0, y , t) = 0, ηn(L1, y , t) = 0,
αn(x ,L2, t) = 0, βn(x ,0, t) = 0;

(62)

and for the supercritical modes, i.e. when n > nc ,{
ξn(0, y , t) = 0, vn(0, y , t) = 0, ηn(0, y , t) = 0,
αn(x ,L2, t) = 0, βn(x ,0, t) = 0.

(63)
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Numerical simulations in the larger domain

The physical parameters:

The length of the domain in x − direction L1 = 103 km,
The length of the domain in y − direction L2 = 500 km,
The length of the domain in z − direction L3 = 10 km ,

The constant reference velocity Ū0 = 20m/s,
The Coriolis parameter f = 10−4,

The Brunt–Väisälä (buoyancy) frequency N = 10−2,

The final time T = 5× 104 s ,
The number of modes Nmax = 5.
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Numerical simulations in the larger domain

The numerical parameters:

The number of time steps NT = 1600,
The number of mesh grids in x Nx = 400,
The number of mesh grids in y Ny = 200,
The number of mesh grids in z Nz = 40.
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Numerical Experiments in the larger domain

Figure 13: Numerical results for velocity field
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Numerical Experiments in the larger domain

Figure 14: Numerical results for φ
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Numerical Experiments in the larger domain

Figure 15: Numerical results for ψ
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Numerical simulations in the middle-half domain

Boundary conditions:
for the zero mode,

u0(L1/4, yj , tk ) = ul
0(L1/4, yj , tk ),

u0(3L1/4, yj , tk ) = ul
0(3L1/4, yj , tk ),

v0(L1/4, yj , tk ) = v l
0(L1/4, yj , tk ),

v0(xi ,L2/4, tk ) = v l
0(xi ,L2/4, tk ),

v0(xi ,3L2/4, tk ) = v l
0(xi ,3L2/4, tk ).

(64)

for the subcritical modes, i.e. when 1 ≤ n < nc ,

ξn(L1/4, yj , tk ) = ξl
n(L1/4, yj , tk ),

vn(L1/4, yj , tk ) = v l
n(L1/4, yj , tk ),

ηn(3L1/4, yj , tk ) = ηl
n(3L1/4, yj , tk ),

αn(xi ,3L2/4, tk ) = αl
n(xi ,3L2/4, tk ),

βn(xi ,L2/4, tk ) = β l
n(xi ,L2/4, tk ),

(65)
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Numerical simulations in the middle-half domain

and for the supercritical modes, i.e. when n > nc ,

ξn(L1/4, yj , tk ) = ξl
n(L1/4, yj , tk ),

vn(L1/4, yj , tk ) = v l
n(L1/4, yj , tk ),

ηn(L1/4, yj , tk ) = ηl
n(L1/4, yj , tk ),

αn(xi ,3L2/4, tk ) = αl
n(xi ,3L2/4, tk ),

βn(xi ,L2/4, tk ) = β l
n(xi ,L2/4, tk ).

(66)
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Numerical simulations in the middle-half domain

The numerical parameters:

The number of time steps NT = 1600,
The number of mesh grids in x Nx = 200,
The number of mesh grids in y Ny = 100,
The number of mesh grids in z Nz = 40.
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Numerical Experiments in the middle-half domain

Figure 16: Numerical results for velocity field
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Numerical Experiments in the middle-half domain

Figure 17: Numerical results for φ
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Numerical Experiments in the middle-half domain

Figure 18: Numerical results for ψ
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Figure 19: Top row: evolution of the solution u in the L2 and L∞

norms. Bottom row: evolution of the relative errors for u in the L2 and
L∞ norms.
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Figure 20: Top row: evolution of the solution v in the L2 and L∞

norms. Bottom row: evolution of the relative errors for v in the L2 and
L∞ norms.
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Figure 21: Top row: evolution of the solution w in the L2 and L∞

norms. Bottom row: evolution of the relative errors for w in the L2 and
L∞ norms.
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Figure 22: Top row: evolution of the solution ψ in the L2 and L∞

norms. Bottom row: evolution of the relative errors for ψ in the L2 and
L∞ norms.
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Figure 23: Top row: evolution of the solution φ in L2 and L∞ norms.
Bottom row: evolution of the relative errors for φ in L2 and L∞ norms.
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Figure 24: mean divergence
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Summary

Summary:

A new set of nonlocal boundary conditions has been
implemented.
We numerically verify that the proposed boundary
conditions, proven suitable for the linearized equations, are
also suitable for the nonlinear case.
We numerically verify the transparency property of the
proposed boundary conditions.
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Thank you !!
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