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Examples of ‘new’ control variables

Beside stream function ({); unbalanced part of velocity potential (x); unbalanced part of temperature (T); unbalanced part of
surface pressure (P); and normalized relative humidity (nrh), examples of other analysis control variables are

* Ozone

e Visibility

* Radar reflectivity

* Cloud water

* Cloudice

* Cloud condensate

* Wind gust

* Cloud ceiling height

Use of nrh as example on Gaussian CV
Issues related to implementing new control variables will be discussed



GSI Hybrid Variational-Ensemble

*Incorporate ensemble perturbations directly into variational cost function through extended
control variable
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X; is the increment associated with the static covariance

S & B.: weighting coefficients for fixed and ensemble covariance respectively
X, : (total increment) sum of x; increment from fixed/static B (x;) and ensemble B
o, extended control variable; Xe: ensemble perturbation

L: correlation matrix ( localization on ensemble perturbations)

B: background error covariance matrix

R: observational and representativeness error covariance matrix
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Background Error Variance
-finding Gaussian distribution
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Figure 21: The pdf for a single forecast difference at approximately 850 hPa for g, logg and RH (see legend). The left
panel shows all differences, and the nght panel shows differences for similar values of the background field (a 2.5%
mterval centered around the median of the background values of each vanable). For comparison, a Gaussian (black line)
and an exponential pdf (dashed black) are also shown. The right panel is noisy due to the limited sample in each interval,
but the result remains similar when more fields are added to the statistics.

Holm et al.(2002) ECMWF Tech Memo
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Humidity background error
-finding Gaussian distribution

- Standard devilation
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Figure 22: Forecast differences for the ‘lincar’ SRH{RH ") at approximately 850 hPa. The left panel shows the pdf’s for
the Towest, median and highest 2.5% values of RH”, and the right panel shows the standard deviation (full line) and bias
(dashed) as a function of RH”.

Holm et al.(2002) ECMWF Tech Memo
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Humidity background error
-finding Gaussian distribution
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Figure 23: Forecast differences for the ‘symmetric’ 3RH{RH” + J8RH ) at 850 hPa. The left panel shows the pdf’s for
lowest, median and highest 2.5% values of RH” + %&RH, and the right panel shows the standard deviaton and bias as a
!hncﬁonufRIﬂ’+-%6RfL AHlhnx:cuncscununwc}cuunuﬂﬂy\vcH\vnhlhc(hmsﬂun(hhwklmc) Note that bins for the
extreme values of RH” are particularly affected by model and analysis effects of super-saturation clipping and resetting
of humidity to positive values.

Holm et al.(2002) ECMWF Tech Memo
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Normalized relative humidity as analysis control variable

ORH

o(RHP + %5RH)

ORH =

o(RHP) : standard deviation of background error as function of RHP

Holm et al.(2002) ECMWF Tech Memo



Normalized relative humidity
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CV_qg and CV_nrh produce similar analysis increments
NMM central 8km domain
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At top of the model domain
CV-q: extend the RH forcing from below or from satellite radiance

CV_nrh: keep zero RH forcing with T and g multivariate relation.

1 300 B6d 420

Grales: COLA/IRES

With positive forecast impact CV_nrh is used operationally in both
global and regional systems at NCEP



Importance of background error variances

Humidity background error variances from the EDA

Pre-July 2017: Humidity background error variances were climatological average for given background relative
humidity value and model level through a climatological statistically determined fit.

Now: Use relative humidity background errors o, from EDA like for other variables.

Humidity sensitive data used better, in particular MW/IR where the radiance signal is more accurately
apportioned between humidity and temperature.

In the tropics in particular, where absolute humidity is highest, this leads to more accurate wind adjustments
through the 4D-Var tracing effect.

Results show improved O-B fits for wind and humidity sensitive observations and improved scores of wind in
particular.

Holm (2017) NCEP seminar
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Adding Ozone as analysis variable

Defined Iayer—ozone as control variable (instead of ozone mixing ratio)

Layer ozone observations from SBUV used

Sharp changes of ozone mixing ratio in vertical direction
-Vertical correlation with layer ozone / ozone mixing ratio

Fraction of zonal mean of first guess ozone defined as B variance to account for
seasonal change of ozone variance



Problem with ozone analysis
-negative 03 at z=38 & 37
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Seasonal change of ozone
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Oz background error variances

-derived from 20% of ozone first guess zonal mean

rms oz 2009053118 rms oz 2009113106

EQ oM

06 Be—-0& 1e—05 1.2e—051.4e—051.62—05

CWB

15



impact of variance & vertical covariance
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Problem with ozone analysis

-Importance of CV variances

2e—06 4e—-06 Ge—08 He—0&

Note the negative ozone in the ozone hole near south pole

- through use of satellite data (t,q,0z,p)
CwB
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Real-Time Mesoscale Analysis (RTMA)

RTMA: 2D Variational surface analysis run hourly
— Use NCEP’s Gridpoint Statistical Interpolation (GSI) system
— Temperature, moisture, pressure, winds (speed/direction/gust), visibility
— 2.5 km grid over CONUS, 3 km grid over Alaska, Hawaii and Puerto Rico
— Assimilated surface obs include METARs, buoys, and mesonets
— Background field: 1-hour forecast from HRRR over CONUS
Local NAM nests for Alaska, Hawaii, Puerto Rico

Purpose of RTMA: Used for situational awareness, verification and tuning of
blended model output

Unique challenge: Analysis should match observations as closely as possible;
well-balanced initial conditions for model initialization is not the priority

URMA: runs 6 hours after analysis time for verification/tuning

Courtesy of Steve Levine , NCEP
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Proposed new first guess for RTMA

time

temperature

Last RTMA analysis + forecast tendency as first guess (see g, & g,)
Converge to the observation (desired results?)

CWB
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changing first guess for RTMA

Use previous RTMS analysis + time tendency from NWP model as first
guess

Benefit over using climatology: seasonal and diurnal change, large scale
weather pattern change, factor in influence of terrain, radiation, moisture,
wind...

Benefit over using NWP forecasts: easier to correct model bias with
observation, avoid some of representativeness error.

Benefit: improve QC
Problem: converge to bad data if they are used

Day two: Locally choose time tendencies from various models with the
guidance of observations in the area; anisotropically fill in the gap
between observations

— Tool: hybrid ensemble-variational method (provides anisotropy)



Complaint on visibility in RTMA

Low visibilities eastern ID 047, 2/13/2017

...The overnight Visibility over eastern ID were analyzed as very low on the RTMA...and
URMA. | was unable to find such low visibilities reported, but did note that the low Vis
was forecast on the HRRR. Looks like it made it to the RTMA....
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URMA Visibility Guess [N ) Legend
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URMA Visibility Analysis
in meters
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CV: log-vis

- tangent linear conversion to visibility

J(x'f ,a)z %(xf )T B‘l(x; )+ %(yt —Hx, )T R‘l(y't - Hx't)

vis_inc2 control vector vis_inc? after control2state
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viS_INC new

®E 100E 110E {20E 130E  14DE 150E  1BOE  1TOE 18D 170W  16OW

2017-05-14-15:30

Adjust B to fit the data better, but inc with variable conversion signal
from tangent linear assumption

27



fit the data better & without variable conversion signal

vis_inc cvar=vis
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Options for CV_visibility

* Analysis with log-vis fits data better

e Avoid tangent linear assumption by using log-vis in inner iterations (both CV and
observations)

(More discussion on logarithmic variables later)



Ridge/Valley Temp in E. Kentucky
06Z, 4/17/2017



Ridge/Valley Temp in E. Kentucky

URMA
06z
Sunday
April 9th,
2017

Sun 862 09-Apr-17

CwWB
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Ridge/Valley Temperature Differences
Not Being Captured

06Z Sunday, April 9t, 2017

Temperature Temperature
(Acutal) (U RMA)

Jackson 3SE 37.54 -83.34 638 feet

(KY Mesonet) (Valley)

Paintsville4wW BTCK 37.83 -82.88 755 feet 34 45

(KY Mesonet) (Valley)

Jackson, KJIKL 37.59 -83.31 1381 feet 53 42

Carroll Airport (Ridge)

Hindman 5N VEST 37.41 -82.99 1556 feet 46 44
(Ridge)
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T—inc old

Use only obs from the 4 stations

QKSD,BTCK,KJKL,VEST

T—inc QC new

New: adjust horizontal scale

Type 187:
Type 195:

KJKL gross checked (not used with 4.57 deg K innovation)
26 used, 13 Hilbert_curved

CWB
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T-inc using all obs from the 4 stations

by relaxing gross check and turning off VarQC & Hilbert curve in both old and new

T—inc NQC old T—inc NQC new

Adjust H scale & All 40 obs from 4 stations used
Anl rms fit: old: 3.04 new: 0.81
Max O-A : old:5.29/-3.89 new: 2.28/-1.42(degree k)



Assimilation of Radar Reflectivity
Liu et al.(2017)
* To directly assimilate reflectivity (Z) and radial velocity (Vr) data within a variational

(either pure variational or hybrid) framework, some issues associated with the
nonlinearity of the reflectivity operator arise and special treatments are needed.

* We consider two choices of moisture control variable, namely, mixing ratio (CV_q)
and logarithmic mixing ratio (CV_logq)

Gradient of cost function and tangent linear operators for hydrometeors
(reflectivity from rain as example)

o g Z, =3.63x10° x(pq, ) "

1.75
CV_logg: Z, =3.63x10° x (pqur )
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Jacobian of reflectivity

Issues with Using CV_q
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When background Z is below ~20 dbz, the gradient is very large.
The gradient of the cost function becomes dominantly large

Liu et al (2017)

when the background Z values are small, making the

assimilation of Z where background Z has high values and of all

Vr data ineffective (having little impact).

CWB

Benefits of Using CV_logq
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a, (9/kg)

0.7

0.6

0.5

041

Issue with CV_logq: background error structure
Liuet al (2017)
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Single observation test for CV_logq and CV_q with different background. (a) background q,; (b) logq analysis
increments using Gaussian background error correlation with the same scale of CV_q; (c) g increments derived

from CV_logq analysis increments (black, blue and green) and CV_q analysis increment (red).

Problem: A Logq -> A qis function of background g
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fixing the problems on assimilating reflectivity
Liuet al (2017)

solutions:
1) setting a lower limit to mixing ratio in Z observation operator (qglim);

2) avoiding very weak reflectivity observations where background reflectivity is also very
week (limit on data);

3) assimilating Z data in a separate analysis pass from Vr observations in the high background
Z region when using CV_q (Zlim_Pass)

4) setting a lower limit to X, (analysis increments) when converting analyzed logarithmic
mixing ratio to regular mixing ratio (X lim).



Summary

Reasons for poor analysis fit to obs

Variances, Gaussian CV, flow/seasonal dependent B
Scales of B: vertical & horizontal structures

Data quality control

Source of penalty (clear area in reflectivity)
Tangent linear assumption



Summary

background error variances

03 _CV defined as layer ozone / ozone mixing ratio: convergence, vertical
correlation, accurate variance

* Realistic variances of each variables for nonconventional obs
i.e. satellite variances (t,q,0z,p), radar reflectivity(q,qr,..)

* Realistic variances of each variables for CV_nrh

* Linear visibility & log-visibility: Gaussian B, better fit to data

e Climatological averaged humidity variances & ensemble estimated humidity (ozone)
variances: more accurate wind adjustments through the 4D-Var tracing effect



