Evaluating the MJO forecast skill in the NCEP GEFS 35-day Experiments

Wei Li, Yuejian Zhu, Xiaqiong Zhou, Malaquias Peña, Dingchen Hou, Hong Guan, Eric Sinsky Christopher Melhauser, Richard Wobus

NOAA/NCEP/EMC and IMSG

Presentation for CWB December 20 2017

- Background
- Experiments and Data
- MJO forecast skill
- Forecast skill of the key components of MJO
- Dependence of MJO skill on ensemble size
- Summary

Background

Description of the ensemble forecast system

Each ensemble member evolution is given by integrating the following equation

$$e_{j}(T) = e_{0}(0) + de_{j}(0) + \int_{t=0}^{T} [P_{j}(e_{j},t) + dP_{j}(e_{j},t) + A_{j}(e_{j},t)]dt$$

Initial uncertainty Model uncertainty

where $e_j(0)$ is the initial condition, $P_j(e_j,t)$ represents the model tendency component due to parameterized physical processes (model uncertainty), $dP_j(e_j,t)$ represents random model errors (e.g. due to parameterized physical processes or sub-grid scale processes – stochastic perturbation) and $A_j(e_j,t)$ is the remaining tendency component (different physical parameterization or multimodel).

Operation: ECMWF-1992; NCEP-1992; MSC-1998

Reference: - first global ensemble review paper

Buizza, R., P. L. Houtekamer, Z. Toth, G. Pellerin, M. Wei, Y. Zhu, 2005:

"A Comparison of the ECMWF, MSC, and NCEP Global Ensemble Prediction Systems" Monthly Weather Review, Vol. 133, 1076-1097

CRPSS for NH 500hPa geopotential height

Experiments and Data

- Operational Version:
 - GEFSv11 extended to 35 day forecast (STTP);
 - T574 (33 km) for 0-8 days, T382 (55km) after 8days.
- Experiments:
 - SPPT+SHUM+SKEB (**SPs**) with control version of SST;
 - SPs with bias corrected CFSv2 forecast SST (**SPs+CFSBC**);
 - SPs with bias corrected CFSv2 forecast SST and scale aware convection scheme (SPs+CFSBC+CNV);

All experiment cover the period of 20140501-20160526, 5-day interval.

• Analysis data:

 $\circ~$ GDAS during 20140101-20161031; NCEP reanalysis for U and NOAA OLR.

• Both forecast and analysis data using daily mean

1) Stochastic Schemes for Atmosphere - Applied to GEFS experiments

 Dynamics: Due to the model's finite resolution, energy at non-resolved scales cannot cascade to larger scales.

 Approach: Estimate energy lost each time step, and inject this energy in the resolved scales. a.k.a stochastic energy backscatter (SKEB; Berner et al. 2009)

- **Physics**: Subgrid variability in physical processes, along with errors in the parameterizations result in an under spread and biased model.
 - Approach: perturb the results from the physical parameterizations, and boundary layer humidity (Palmer et al. 2009), and inspired by Tompkins and Berner 2008, we call it SPPT and SHUM
- Above schemes has been tested for current operational GEFS (spectrum model) with positive response plan to replace STTP for next implementation (FV3GEFS)

Kinetic Energy Spectrum

Berner et al. (2009)

Examples of stochastic patterns for SPPT

Courtesy of Dr. Bing Fu

2). SST Schemes (operation) and 2-tier SST approach - Assimilate coupling

Operational

$$SST_{f}^{t} = \left[SST_{a}^{t_{0}} - SST_{c}^{t_{0}}\right]e^{-(t-t_{0})/90} + SST_{c}^{t}$$

• CFSBC

$$SST_{f}^{t} = (1 - w) * \left[SST_{a}^{t_{0}} - SST_{cfsrc}^{t_{0}} + SST_{cfsrc}^{t} \right] + w * \left[SST_{cfs}^{t} - (SST_{cfs_{c}}^{t} - SST_{cfs_{c}}^{t}) \right]$$

$$w(t) = \frac{(t - t_0)}{35}$$

- $SST_a^{t_0}$ -- SST analysis at initial time (RTG)
- SST^t_c -- Climatological daily SST from RTG analysis for forecast lead-time t
- SST_{cfs}^{t} -- CFS predictive SST (24hr mean) for forecast lead-time t
- *SST*^{*t*}_{*cfs*} -- CFS model climatology (predictive SST) for forecast lead-time t
- SST_{cfsrc}^{t} -- CFS reanalysis daily climatology for forecast lead-time t

3). Update GFS convection scheme

- Scale-aware, aerosol-aware parameterization
- Rain conversion rate decreases with decreasing air temperature above freezing level.
- Convective adjustment time in deep convection proportional to convective turn-over time with CAPE approaching zero after adjustment time. proportional to convective turn-over time with
- function of mean updraft velocity.
- Convective inhibition (CIN) in the sub-cloud layer additional trigger condition to suppress unrealistically spotty rainfall especially over high terrains during summer
- **Convective cloudiness enhanced by suspended** cloud condensate in updraft.
- Significant improvement especially CONUS precip in summer.

Courtesy of Dr. Vijay Tallapragada

Reference: Han, J. and et al., 2017 Wea. and Fcst. 9

A key area (time scale) to focus on ...

Madden-Julian Oscillation

Phases of the MJO

END OF ACTIVE STAGE

SUPPRESSED STAGE

Wheeler and Hendon 2004

Evaluation of MJO skills

Based on Wheeler-Hendon Index

An improvement comes from three areas:

- 1. Ensemble and stochastic physic perturbations
- 2. 2-tier SST to assimilate impact of coupling
- 3. New scale-aware convective scheme

Amplitude of MJO during May 2014- May 2016 from GDAS analysis data. The resolution of the time-series is 5 days

6-year average WH-MJO forecast skills for CFSv2

Courtesy of Dr. Qin Zhang

WH-MJO Forecast Skills for 2-yr Experiments

GEFS week 3&4 forecasts (May 2014-May 2016)

CFSv2 is NCEP operational climate forecast system (coupling) implemented on 2011 – 16 members leg (24 hours) ensemble

Strong vs Weak Period

For "strong" and "weak" periods (relatively), our best configuration (SPs+CFSBC+CNV)

Variability of the MJO index

- ----- Analysis
- ----- STTP (CTL)
- ----- SPs
- ----- SPs+CFSBC
- ----- SPs+CFSBC+CNC

- 1. CTL forecasts are much stronger
- 2. Biases are similar from different leads
- 3. Biases are varied for different experiments

MJO evolution

MJO propagation : lead day=1

MJO propagation : lead day=15

MJO propagation : lead day=22

Forecast skill of the key Variables

Much improvement for zonal winds – circulation; but not much for OLR

Correlation map of the key Variables

Correlation as a function of lead time

-0.45 -0.3 -0.15 0 0.15 0.3 0.45

Pattern correlation of the composite variables in MJO phases

^{-0.24 -0.16 -0.08 0 0.08 0.16 0.24}

CORR as a function of lead time: **APCP**

0

0.1 0.2 0.3

Effect of the SPs

SPs – big improvement of MJO skills; good spread, smaller bias in tropical

WH-MJO Forecast Skills: Ensemble mean vs each member

This study based on SPs configuration only!!!

Summary

- MJO forecast skill : SPs +CFSBC+CNV (22 days) > SPs+CFSBC (18.5 days) > SPs (16.8 days) > STTP (12.5 days)
- Component Forecast skill: U200 > U850 > OLR
- Most evident improvement occurs over the tropical west Pacific and Indian Ocean.
- MJO skill of 21 member is similar to 11 member and both 21 and 11 member skill is better than 5 member skill
- MJO propagation could relate several issues, such as model physics – tropical convection?

Backup Slides

24 hr APCP (Lead day=7), 2yr ave.

20N

101

Difference Maps

Kg m⁻²

24 hr APCP (Lead day=14), 2yr ave.

Difference Maps

Kg m⁻²

24 hr APCP (Lead day=21), 2yr ave.

Difference Maps

20140501-20160630, Daily

20140501-20160526, 5d

