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The Climate Prediction Center (CPC) of 
NOAA/NCEP is responsible for issuing monthly, 
subseasonal and seasonal prediction for the US and 
also for El Niño and others

• For systematically forecast ENSO, the effort began in 1982 
when a very strong El Niño developed.

• It was not known that this event had already developed until 
several months later because of poor monitoring network 
back then. 



CPC Nino 3.4 (5N-5S, 90W-150W) SSTs

• Historical hindcast (retrospective or re-forecast) data for Nino 
3.4 SSTs from three statistical models (CA, CCA, Markov) and one 
dynamical model (CFSv2) from lead 1 to 7 months; data run from 
1982 to 2016.

• Received CFSv2 forecasts from Unger last October but they were 
uncorrected.

• Cross Validation: repeatedly omit a few observations from the 
data, reconstruct the model, and then estimate the omitted 
cases.  Use Leave-Three-Out Cross Validation (LTOCV).  



Lead times



Statistical models

1. CA: Constructed analog (CA) is a statistical forecast that is a linear combination of past 

observed anomaly patterns in the predictor fields such that the combination is as close 

as desired to the current state (Van den Dool 1994).

2. CCA: Canonical Correlation Analysis (CCA) is an empirical statistical method that 

finds patterns of predictors and predictand that maximize the correlation between them 

(Barnston et al. 1994, Chu and He, 1994, He and Barnston 1996).

3. MKV: Markov Model (MKV) is built in a reduced multivariate empirical orthogonal 

function (MEOF) space of the sea surface temperature anomaly, sea level and wind 

stress anomaly fields (Xue et al. 2000).



BMA

Bayesian model averaging method is a statistical method for 

postprocessing the ensembles and producing probabilistic forecasts 

from ensembles. 

Why BMA? BMA is different from other model averaging methods 

in that it not only describes the uncertainties associated with each 

model simulation but also provides the diverse capabilities of 

different models 



We aim to use Bayesian Model Averaging (BMA) as a 

method that the weighted estimate is a better predictor of the 

observed system behavior than any of the individual models 

of the ensemble – Better Predictor 

BMA method can assess the performance of the 

individual models and assign weights to models

- Model Performance 



Bayesian Model Averaging (BMA)

Some examples:
1. Applications of Bayesian model averaging in the reconstruction of 

past climate change using PMIP3/CMIP5 multimodel ensemble 
simulation. Fang and Li, J. Climate 2016

2. Seasonal forecasts of Australian rainfall through calibration and 
bridging of coupled GCM outputs.  Schepen et al., J. Climate, 2014

3. Quantifying uncertainty in projections of regional climate change:
A Bayesian approach to the analysis of multimodel ensembles.
Tebaldi et al., J. Climate, 2005 



For a suite of climate models k=1, 2, …, K, the joint PDF of y conditional on 𝑦𝑘

is given by a weighted average of the individual model density as (Raftery et al.

2005)

(1)

where 𝑦 is the observed SST, 𝑦𝑘 the hindcast SST frommodel 𝑘, 𝑤𝑘 the BMA

weight for model 𝑘 and is a nonnegative value that satisfies . The weight

reflects how well model k fits the observation. The conditional density for

individual model k is assumed to be Gaussian distributed.
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θ : parameter 

 
     Classical statistics: θ a constant 

     Bayesian inference: θ a random quantity,  P(θ|y) 
 

Bayes’ theorem 

y: data 
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P(y|θ): likelihood function        

π(θ):  prior probability distribution 

  

  

   
 

Posterior distribution
characterizes the current best 
information regarding 
uncertainty about θ







K

k

kk wKkw
1

1)(),...,1,p( 

The prior distribution of the weights is specified by a symmetric

Dirichlet as (Schepen et al. 2014)

where α is known as the concentration parameter and equals to 1.0 +
𝛼0

𝐾
. 

This prior distribution is intended to constrain the effect of sampling errors 

due to limited sample size and thus stabilizes the weights. 

(2)



By invoking equation (1) and assuming there are T independent events, the 

posterior distribution of the weights for each time step t = 1, …, T, is thus

(3a)

(3b)

Thus, the BMA is a finite mixture model.  Making use of the symmetric and conjugate 
Dirichlet prior, equation (3b) becomes

(4)
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Expectation-Maximization (EM) algorithm to derive the maximum likelihood 
estimation for model parameters 

The maximum-likelihood estimators are the most probable values 
for the parameters, given the observed data. In other words, it is 
the value of the parameter that makes the observed data most 
likely to have been observed. 

Bayesian Model Averaging
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Expectation-Maximization (EM) algorithm 

The BMA weights are then estimated iteratively with the above two equations 
until the algorithm reaches a convergence of the logarithm of term A (posterior 
distribution of the weights)

E step (expectation) calculates 
membership probability (ok

t,(j+1)) for 
the time t and model k 

M step (maximization) calculates new 
weights (wk

t,(j+1)) 



• It starts with an initial guess for the weights.  In this study, a uniform 
distribution is given to all weights in iteration “0.”

• In the E-step, the membership probability is estimated using the 
current guess for the parameters (wk) and the forecast PDF 
conditional on model k.  In the M-step, the weights are estimated 
given the current value of the membership probability, the 
concentration parameter, sample size (T), and the number of 
models used (K).   

• The BMA weights are then estimated iteratively with Equations (5) 
and (6) until the algorithm reaches a convergence of the logarithm 
of term A in Equation (4).  The EM algorithm alternates between an 
expectation and a maximization step.  The convergence is defined as 
the change of the logarithm of posterior “A” between two 
consecutive iterations is no greater than a predefined small 
tolerance.



1

1. Historical SST hindcasts for Niño 3.4 (5°N-5°S) (170°W-120°W) 

2. Statistical models : CA, CCA, MKV, CFSv2 (CPC)

3. 3 months running average from 1982 to 2016 (DJF JFM FMA MAM 

AMJ MJJ JJA JAS ASO SON OND NDJ)

4. Lead time from 1-month to 7-month



•CFSv1 was the coupled atmosphere-ocean-land 
model for seasonal prediction and implemented 
into operations at NCEP in August 2004

•CFSv2 was implemented in March 2011 and 
made retrospective forecasts from 1982 to 2010 
and onward for real time subseasonal and 
seasonal predictions 

•Some issues with CFSv2 data



By invoking equation (1) and assuming there are T independent events, the 

posterior distribution of the weights for each time step t = 1, …, T, is thus

(3a)

(3b)

Thus, the BMA is a finite mixture model.  Making use of the symmetric and conjugate 
Dirichlet prior, equation (3b) becomes

(4)
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Advanced Microwave Sounding Unit satellite obs in 1999
The cold bias also occurred in other equatorial oceans



• Let mean forecast of 1982-1998 be F98 and mean observation during the 
same period be O98.  

• Let mean forecast during 1999-2010 be F10 and mean observation during 
the same period be O10.

• Then correction factor = (F98-O98) – (F10-O10)

• The bias corrected forecast prior to 1999 = Forecast – correction factor 

(mean forecast bias prior to 1999 = mean forecast bias after 1998)

• Also applied a 1-2-1 smoother across lead time to prevent abrupt bias 
correction changes

• We are currently working on the bias corrected CFSv2 forecasts

David Unger sent me the calibrated CFv2 reforecasts in February 2018 







BMA weights for each of three models versus lead times



Forecast skill is usually presented as a skill score, which can be interpreted as a percentage 
improvement over the reference forecasts. 

𝑆𝑆𝑟𝑒𝑓 =
𝐴−𝐴𝑟𝑒𝑓

𝐴𝑝𝑟𝑒𝑓−𝐴𝑟𝑒𝑓
× 100% (S1)

Equation (S1) can be constructed by using the MAE, MSE or RMSE as the underlying accuracy 
statistics (A). In our study, MSE values are used as accuracy statistics. The skill score is thus 
expressed as

SS =
𝑀𝑆𝐸−𝑀𝑆𝐸𝑐𝑙𝑖𝑚

0−𝑀𝑆𝐸𝑐𝑙𝑖𝑚
= 1 −

𝑀𝑆𝐸

𝑀𝑆𝐸𝑐𝑙𝑖𝑚
(S2)

𝑀𝑆𝐸𝑐𝑙𝑖𝑚 =
1

𝑛
σ𝑘=1
𝑛 ( ҧ𝑜 − 𝑜𝑘)

2 (S3)

where the perfect forecasts have MSE=0 so SS=1. MSEclim is the climatological mean square 
error values of the Nino 3.4 SSTs.  

Skill Score



CA CCA MKV BMAcv

ss 0.728 0.725 0.662 0.815

lead1 RMSE 0.477 0.479 0.532 0.393

cc 0.874 0.852 0.853 0.912

ss 0.686 0.661 0.577 0.765

lead2 RMSE 0.513 0.533 0.595 0.444

cc 0.850 0.813 0.806 0.884

ss 0.649 0.588 0.500 0.716

lead3 RMSE 0.542 0.588 0.647 0.488

cc 0.829 0.767 0.762 0.856

ss 0.605 0.518 0.441 0.669

lead4 RMSE 0.575 0.635 0.685 0.527

cc 0.804 0.720 0.726 0.829

ss 0.552 0.457 0.401 0.625

lead5 RMSE 0.613 0.675 0.710 0.562

cc 0.775 0.678 0.697 0.803

ss 0.491 0.403 0.375 0.579

lead6 RMSE 0.655 0.709 0.725 0.595

cc 0.741 0.641 0.671 0.774

ss 0.429 0.364 0.356 0.529

lead7 RMSE 0.694 0.732 0.737 0.630

cc 0.701 0.611 0.648 0.736

A comparison between BMA 
deterministic forecast and each 
individual model forecast from lead one 
to seven. The BMA deterministic 
forecast was performed by leaving three 
out cross validation.

For all leads, the BMA has the highest 
skill score, lowest RMSE, and highest 
correlation relative to 3 individual 
models.  The CA has a better skill than 
CCA and MKV.  Forecast results and the 
weights for each model are in 
agreement.  The model with a higher 
weight is also the model with better 
forecasts.



Saha et al., 2014

Anomaly correlation of
3-mo mean SST 
between forecast and 
obs.

“In the tropical Pacific, 
the CFSv2 skill is slightly 
lower than that of 
CFSv1…”

3-mo lead

6-mo lead

CFSv1 CFSv2



BMA deterministic forecast performance (RMSE) for different target 

seasons. No cross validation.  35 years from 1982 to 2016.
CA is not the best for all target seasons (AMJ,MJJ, JJA); Markov has the 
worst forecast from JAS to NDJ; CCA is worst from JFM to MAM.  For
BMA, the RMSE is almost always the lowest for all target seasons.  
The boreal summer has lower RMSE while other seasons have larger errors.  



Correlation coefficients of individual model forecasts and BMA 
deterministic forecasts for lead 1-7.  Overall, the CCA has the lowest 
correlations and BMA has the highest correlation for all leads and all 
target seasons.  From lead 1 to 4, boreal autumn has lowest correlation 
and spring has the best correlation.  At higher leads, JFM also has low 
correlation while AMJ/MJJ has higher correlations.



Skill score for individual model forecast and BMA deterministic forecasts for 
different target seasons.    The Markov model has the worst sill from JAS to 
NDJ for all leads.  The BMA performance is still robust and best for all leads.



An example of the BMA probability forecast (solid pdf), individual model probability forecasts (CA, CCA, MKV), 
deterministic forecast from each model (solid circle) and BMA deterministic forecast (red circle) for one month 
lead forecast of FMA 1982. The vertical solid line is the observation. BMA probability forecast is a weighted average of 
each model PDF.   Dashed vertical lines are BMA 90% prediction interval.  

The BMA deterministic 
forecast is 27.2C and 
observation is 27.4C.



𝐶𝑅𝑃𝑆 = න
−∞

∞

[𝐹 𝑦 − 𝐹0 (y)]
2𝑑𝑦

𝐹0 𝑦 = ቊ
0, 𝑦 < 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒
1, 𝑦 ≥ 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒

The computation of the CRPS 
involves the total area between 
the CDF of the forecast and CDF 
of the observation.  The CRPS has 
a negative orientation so the 
smaller values the better are the 
forecast. 

Continuous ranked probability score (CRPS)



BMA CRPS results of individual 
target seasons. The BMA CRPS 
results were done by separating 
the data into different target 
seasons and use leave three 
out cross validation method to 
apply BMA probability forecast 
to them. Each line represents the 
changes of CRPS of target 
seasons in different lead times 



Summary and Future Direction
• Based on CPC’s 7-month lead-time seasonal SST forecasts for the 

Nino 3.4 region, BMA forecast outcomes are shown to have lower 
RMSE, higher skill score, and higher correlation coefficients for all 
leads than three statistical operational models. Will include 
calibrated retrospective forecasts from CFSv2 ensembles (24 
members) in the future.

• BMA assigns weights to each model and can assess model 
performance.   In general, CA has the better forecast skill relative 
to CCA and Markov models.

• How about subseasonal prediction and seasonal rainfall 
forecasts?  



Thank you!


