A closer look at methods for evaluation of extreme and spatial forecasts

Barbara Brown

Weather Systems and Assessment Program Research Applications Laboratory, NCAR Boulder, Colorado USA bgb@ucar.edu

> 14 March 2018 CWB, Taipei, Taiwan

With acknowledgments to Eric Gilleland, Tara Jensen, Beth Ebert, Caspar Ammann, Tina Kalb, Randy Bullock

Outline

- Methods for extremes
 - What are extremes and how are they different
 - Statistical analysis and representation of extremes
 - Categorical approaches
 - Extreme Dependency scores
- Spatial methods
 - Motivation
 - Method categories
 - Application to weather
 - Example applications to climate

EXTREMES

CWB 14 Mar 18: Extremes and Spatial Methods

Why are special methods needed to evaluate extreme events?

Consider the MSE

- Forecast 1:
 - 0.9 cm of precipitation is forecast; 1 cm of precipitation occurs
 - Error is 0.1 cm (10%)
 - Contribution to MSE is 0.01
- Forecast 2:
 - 9 cm of precipitation is forecast;10 cm of precipitation occurs
 - Error is 1 cm (10%)
 - Contribution to MSE is 1
- Is this what we want to happen? The extreme precipitation is much more harshly penalized than the "easy" forecast – even for a pretty good forecast!

Extreme events

- "<u>Extreme</u>" weather often implies "<u>Rare</u>" or infrequent event – i.e., small samples
- Infrequent events (low "base rate" or climatology) often require special statistical treatment...
- May be difficult to observe
 - Greater observation error/uncertainty

Gare Montparnasse, 1895

Extreme Value Theory/Analysis

"Il est impossible que l'improbable n'arrive jamais" --Emil Gumbel

"It is impossible that the improbable will never happen" --Emil Gumbel

Other pioneers:

- Fisher
- Tippett
- Weibull
- Pareto

Extreme value theory

Focuses on

- The distributions of <u>maximums</u> (or minimums)
 - <u>Example</u>: The maximum yearly 24-h precipitation amount
- The <u>frequency</u> of extreme events
 - <u>Example</u>: The number of times daily maximum temperature exceeds 35C

Extreme value distributions

- Extreme value theory concerns the *tails* of the underlying distribution
- The distribution of these extreme values is <u>not the same</u> as the "parent" distribution
- The "Generalized Extreme Value (GEV)" distribution has been developed to describe these distributions

Normal distribution

Extreme Value Analysis: Peaks over thresholds

Choices for verification of extremes

- Need methods that provide information about the extremes
 - Measures like MSE, MAE emphasize the "middle" of the distribution
 - Many measures highly penalize errors in extremes
- Approaches to consider:
 - Categorical scores
 - Extreme dependency scores
 - Probabilistic and spatial approaches
 - "Alternative" scores (e.g., <u>spatial methods</u>)

Categorical scores

Advantages

- Allow "user" to select thresholds for events of interest
 - Threshold can be a (very) large (or small) value to represent relevant events
- Not sensitive to sizes of errors

Disadvantages

- Dependent on sample size (to capture enough events)
- Sensitive to over-forecasting (large biases)
- Not sensitive to sizes of errors
- "Degenerate" for very extreme events (more about this later)

2 x 2 Contingency Table

		Observed			
		Yes	No	Total	
st	Voc	L (False	Forecast	
sca	165	ГШ	Alarm	Yes	
ore	No	Micc	Correct	Forecast	
L.	INO	101155	Negative	No	
	Total	Obs. Yes	Obs. No	Total	

Example:

(Hits + Correct Negs) % Correct = $100 \times -$ Total

Alternative Perspective on Contingency Table

"Standard" Verification Measures (Yes/No forecasts)

Observation

- a = Hits
- c = Misses
- b = False Alarms
- POD = a / (a + c)
- POFD = b / (b + d)
- FAR = b / (a + b)
- Bias = (a + b) / (a + c)

- Accuracy = (a+d) / (a+b+c+d)
 Measures overall % correct
- CSI = a / (a + b + c) Measures "relative accuracy"
- H-K = POD + POFD -1 Measures "discrimination" between Yes and No observations
- POD (PODy)

Measures proportion of observed area that is correctly forecast to be "Yes"

- POFD (PODn) Measures proportion of area that is correctly forecast to be "No"
- FAR

Measures proportion of forecast convective area that is incorrect

Bias

Measures the extent of over- or under- forecasting

• Skill scores (Heidke, Gilbert/ETS) Measure the improvement in Accuracy and CSI, respectively over what's expected by chance

Categorical methods originally designed for extremes

- Heidke skill Score (HSS)
 Accuracy corrected for number correct expected by chance
- Critical Success Index (CSI)
 Accuracy, ignoring Correct Negatives (d)
- Gilbert Skill Score (GSS)
 CSI corrected for number of hits expected by chance

$$HSS = \frac{a+d-C_H}{a+b+c+d-C_H}$$

where $C_H = \frac{(a+b)(a+c)+(b+d)(c+d)}{n}$

$$\mathrm{CSI} = \frac{a}{a+b+c}$$

$$GSS = \frac{a - C_G}{a + b + c - C_G}$$

where
$$C_G = \frac{(a+b)(a+c)}{n}$$

Finley revisited...

	Obs. Yes	Obs. No	Sum
Fcst.Yes	28	72	100
Fcst. No	23	2680	2703
Sum	51	2752	2803

$$POD = \frac{28}{51} = 0.55$$
$$FAR = \frac{72}{100} = 0.72$$
$$Bias = \frac{100}{51} = 1.96$$

$$CSI = \frac{28}{28 + 72 + 23} = 0.23$$

$$\text{ETS} = \frac{28 - 1.8}{123 - 1.8} = 0.11$$

$$HSS = \frac{28 + 2680 - 2656}{2803 - 2656} = 0.35$$

Relationships among contingency table scores

- CSI was designed to focus on extreme/rare events
- CSI is a nonlinear function of POD and FAR
- CSI depends on base rate (event frequency) and Bias

Precipitation Performance Diagram

All on same plot

- POD
- 1-FAR (aka Success Ratio)
- CSI
- Freq Bias

Dots: Scores Aggregated Over Lead Time

Colors: Different Thresholds

Here we see:

- Decreasing skill with higher thresholds even with multiple metrics
- Highest skill at 18-24h leads

Problem with using traditional contingency table approach

Stephenson and Ferro: All of the standard measures are "degenerate" for large values... That is, they tend to a meaningless number (e.g., 0) as the base rate (climatology) gets small – as the event becomes more extreme *Result*: It looks like forecasting extremes is impossible

ETS example (Stephenson)

Figure 4. Scores versus threshold: (a) proportion correct PC, (b) the Peirce skill score (PSS), (c) the equitable threat score (ETS), and (d) logarithm of the OR. Solid line denotes Met Office forecasts, dashed line denotes 6-h-lead persistence forecasts, and the dotted line denotes random forecasts.

New measures for extremes

- "Extreme dependency scores" developed starting in 2008 by Stephenson, Ferro, Hogan, and others
- Based on asymptotic behavior of score with decreasing base rate
- All based on contingency table counts
- Catalog of measures
 - EDS Extreme Dependency score
 - Found to be subject to hedging (overforecasting)
 - SEDS Symmetric EDS
 - Dependent on base rate
 - SEDI Symmetric Extremal Dependency Index
 - Closer to a good score
 - Being used in practice in some places

(See Chapter 3 in Jolliffe and Stephenson 2012; Ferro and Stephenson 2011; *Weather and Forecasting*)

Extreme dependency score example

Symmetric Extreme Dependency Index (SEDI):

$$SEDI = \frac{\ln F - \ln H + \ln(1 - H) - \ln(1 - F)}{\ln F + \ln H + \ln(1 - H) + \ln(1 - F)}$$

Where

$$H = \text{Hit Rate} = \frac{a}{a+c}$$
 $F = \text{False Alarm Rate} = \frac{b}{b+d}$

EDS Example

6-h rainfall (Eskdalemuir)

From Ferro and Stephenson 2011 (*Wx and Forecasting*)

TABLE 6. Prop	perties of five v	erification measures.
---------------	-------------------	-----------------------

	ETS	EDS	SEDS	EDI	SEDI
Nondegenerate limit	×	-	-	-	-
Base-rate independent	×	×	×	-	-
Nontrivial to hedge	-	×	-	-	-
Regular	×	×	×	-	-
Fixed range [-1, 1]	×	×	×	-	-
Asymptotically equitable	-	×	-	-	-
Meaningful origin	-	×	-	-	-
Complement symmetric	-	×	×	×	-
Transpose symmetric	-	×	-	×	×

CWB 14 Mar 18: Extremes and Spatial Methods

Measure	Attribute evaluated	Comments		
Probability forecasts				
Brier score	Accuracy	Based on squared error		
Resolution	Resolution (resolving different categories)	Compares forecast category climatologies to overall climatology		
Reliability	Calibration			
Skill score	Skill	Skill involves <i>comparison</i> of forecasts		
Sharpness measure Sharpness		Only considers distribution of forecasts		
ROC	Discrimination	Ignores calibration		
C/L Value	Value	Ignores calibration		
	Ensemble distribution			
Rank histogram	Calibration	Can be misleading		
Spread-skill	Calibration	Difficult to achieve		
CRPS	Accuracy	Squared difference between forecast and observed distributions Analogous to MAE in limit		
log p score	Accuracy (IGN = $-\log_2 p$)	Local score, rewards for correct category; infinite if observed category has 0 density		

Benefits and issues with probabilistic forecasts

Benefits

- Direct focus on event of interest
 - Probabilities associated with specific events
 - Clear identification of what is important
 - Recognition of uncertainty in forecasts
- Clear approaches for evaluation

Issues

- Limited range of probabilities
- Need large samples
- Observation uncertainties make reliability information questionable

SPATIAL METHODS

CWB 14 Mar 18: Extremes and Spatial Methods

Spatial fields

Weather and climate variables defined over spatial domains have coherent spatial structure and features

Traditional methods ignore this structure

<u>Goal</u>: Define and compare spatial areas of interest

Alternative to treating forecasts as a collection of points

"Measures-oriented" approach to evaluating these forecasts

Verification Measure	Forecast #1	Forecast #2
	(smooth)	(detailed)
Mean absolute error	0.157	0.159
RMS error	0.254	0.309
Bias	0.98	0.98
CSI (>0.45)	0.214	0.161
GSS (>0.45)	0.170	0.102

Validation: Skill of Models

IPCC Model "Spatial Skill": Pattern Correlations

Spatial verification approach(es)

Some key questions for evaluation of S2S and climate models:

How well does a model

... reproduce S2S/climate characteristics?

... represent spatial and temporal variations?

... identify good and bad aspects of predictions?

<u>Goal</u>: Expand climate/S2S model evaluation "toolkit" to include spatial methods currently being applied for weather predictions

Spatial Method Categories

CWB 14 Mar 18: Extremes and Spatial Methods

New spatial verification approaches

Neighborhood

Successive smoothing of forecasts/obs Gives credit to "close" forecasts

Scale separation

Measure scale-dependent error

Field deformation

Measure distortion and displacement (phase error) for whole field

How should the forecast be adjusted to make the best match with the observed field?

Object- and featurebased

Evaluate attributes of identifiable features

5th category: Distance metrics

Distance metrics:

Measure the overall distance between a forecast field and an observation field

Dorninger et al. 2018; BAMS

Commonly used spatial methods

- Neighborhood
 - Fractions skill score
 - Successive smoothing and comparison of forecast vs. observed coverage
 - Compare performance to scale (smoothing level)
- Distance metrics
 - Baddeley's Delta
 - Mean Error Distance (MED)

- Object-based
 - MODE: Method for Object-based Diagnostic Evaluation
 - CRA: Contiguous Rain Area (Ebert-McBride)
 - SAL: Structure-Amplitude-Location
- Field deformation
 - Image warping

MODE – Method for Object-based Diagnostic Evaluation

Davis et al., MWR, 2006

Attributes of Objects defined by MODE

Centroid Distance: Provides a quantitative sense of spatial displacement. *Small is good*

Axis Angle: Provides an objective measure of how well the objects are aligned. *Small is good*

Area Ratio: Provides an objective measure of whether there is an over- or under-prediction of areal extent. *Close to 1 is good*

Method for Object-based Diagnostic Evaluation (MODE)

Comparing objects can tell you things about your forecast like ...

This:

30% Too Big (area ratio=1.3)

Shifted west 1 km (centroid distance = 1km)

Rotated 15° (angle diff = 15%)

Peak Rain 1/2" too much (diff in 90th percentile of intensities = 0.5) **Instead of this:**

POD = 0.35

FAR = 0.72

CSI = 0.16

Datasets

Model

- Global, ~1 degree, 32 members
- Precipitation, temperature, sea ice

Observations, regridded to CESM

- CHRPS precipitation (Africa)
- Global precipitation climatology project (GPCP)
- Princeton temperature (Sheffield et. al. 2006)
- Sea ice satellite (DMSP-F8 SSM/)

CESM-LE MODE Objects

Precipitation objects across 32 members Spatial information on ensemble Some years have greater spread Predictability of extremes

JJA ITCZ Precipitation

JJA ITCZ Precipitation

Frequency	Area Ratio	Intersection Area	Symmetric Diff	Centroid Diff
10%	2.64	313	209	2.64
30%	0.93	236	207	1.73
50%	0.93	186	191	1.24
70%	0.86	113	188	1.51
90%	0.70	48	157	2.83

ENSO Variability and Teleconnections

La Niña - cold

- Can we replicate with model and observations?
- How well do they compare?
- Temperature and precipitation anomalies (1979 -2015)

CWB 14 Mar 18: Extremes and Spatial Methods

Positive (wet) EN precip anomalies (GPCP)

Incr Thresh

El Nino: CESM vs. GCPC Wet anomalies

Forecast

Observation

CWB 14 Mar 18: Extremes and Spatial Methods

Object Comparisons (EN Wet anomalies)

Forecast Objects with Observation Outlines

Attributo	Cluste	er 1	Cluster 2		Cluster 3	
Allfibule	Fcst	Obs	Fcst	Obs	Fcst	Obs
Area	1269	237	242	333	1405	1498
Median intensity	1.6	1.5	1.2	1.4	3.0	2.2
0.90 th intensity	3.0	2.0	1.4	1.9	5.0	4.9
Area ratio (F/O)	5.	4	0.	73	0.	94
Centroid difference	6.	3	10).1	7	.7

Image warping: EN wet anomalies

RMSE reduction from warping: 42%

3D Objects June 13, 2002 **IHOP** Precip Data Vertical Dimension is Time

© 2015 University Corporation for Atmospheric Research. All Rights Reserved.

Attributes (Think of object as 2D slice)

MODE Time-Domain

Analysis

MODE Time-Domain: High pressure objects (from GFS)

f000 – f240	Max Inten	Volume	Centroid (x,y,t)	Velocity
Fcst Object 4	103927	111493	336, 57, 4.19	2.85
Analysis Object 3	103914	113692	335, 59, 4.27	2.79

Courtesy John Halley Gotway

Summary

- Methods exist for a meaningful evaluation of forecasts of extremes
 - New methods provide meaningful information that is more appropriate than traditional approaches (based on extreme value theory)
 - But... still an area of research
- Spatial methods hold much promise for evaluation of climate, S2S and seasonal predictions
 - Also still an area of research BUT many methods are available to use

Resources

Tools

- MET package (<u>https://dtcenter.org/met/users/</u>)
 - Includes neighborhood methods, MODE, Intensity Scale, SEDI etc.
- R verification packages (see next slide)
- Literature on spatial methods:

https://ral.ucar.edu/projects/icp/

R verification libraries

- R is available at http://www.r-project.org/
- Maintained and supported by Eric Gilleland (NCAR)

R: The R Project for Statist	×	
← → C 🗋 www.r-p	project.org	දූ දූ
	R Foundation	Documentation
	Foundation	Manuals
	Board	FAQs
[Home]	Members	The R Journal
	Donors	Books
Download	Donate	Certification
CRAN		Other
R Project	Links	
About R	Bioconductor	
Contributors	Related Projects	
What's New?		
Mailing Lists		
Bug Tracking		
Conferences		
Search		

The R Project for Statistical Computing

Package 'verification'		
February 20, 2015		
Version 1.41		
Date 2012-4-09		
Title Weather Forecast Verification Utilities.		
Author NCAR - Research Applications Laboratory		
Maintainer Eric Gilleland <ericg@ucar.edu></ericg@ucar.edu>		
Depends R (x= 2,10), methods, fields, boot, CircStats, MASS, diw		
Description This package contains utilities for varification of discrete.continuous, probabilistic forecasts and forecast conversed as pacentaria of utilities of the states.		
License (FPL (>= 2)		
LazyData wes		
Repository CRAN		
Date/Publication 2014-12-24 20:27:09		
NeedsCompilation na		
B tonics documented:		
it topics documented.		
antribute brier check/mer conditional.quantile	4	
cres Decorapostion		
disc.dat		£
-discrimination - dat	····· []	
	14	i
Package 'SpatialVx'		
•		
February 19, 2015	20	2
Version 0.2-2		
Date 2011-12-09		
Title Spatial Forecast Ventication		
Author Frie Gilleland <frie@ucar.edu></frie@ucar.edu>		
Maintainer Eric Gilleland <erico2ucar.edu></erico2ucar.edu>		
Depends R (>= 2.10.0), spatstat (>= 1.37-0), lields (>= 6.8).		
smoothie, smati, turboEM		
Imports distillery, maps, boot. CircStats, fastcluster, waveslim		
Suggests shapes		
Description Functions to perform spatial forecast verification		
License GPL (S= 2)		
URL http://www.ral.ucar.edu/projects/icp		
BugReports http://www.ral.ucar.edu/projects/icp/SpatialVx		
NeedsCompilation no		
Repusitory CRAN		
Date/Publication 2014-12-24 01:45:06		
R topics documented:		
SparialVx-package 3		
abserrioss 8		
Aindex 10		
centdist [3		
Cindex		
clusterer		
combiner		
compositer		
CSIsamples		
1		
	J	F