Evaluation of climate model toward CMIP6 protocol

Young-Min Yang and Bin Wang

IPRC, University of Hawaii / ESMC modeling team, NUIST

Co-work: Juan Li, Sun Bo, Yan Bao, He Jie

Climate model is ...

Very Complex

Internal feedback

An effective evaluation tool is critical for further model improvement.

Introduction

Motivation

- Facilitate routine evaluation of climate model
- Need for standard tool for model evaluation
- Supporting decision about whether this version is improved or not?

Goal

- Develop an evaluation tool for climate model improvement
- Apply an evaluation for examining model performance (e.g. DECK run)

Contents

- Pre-Industrial (PI, fixed external forcing at 1850)
- Historical run (HIS, time evolution external forcing 1850 to 2014)
- Atmosphere, Land, Ocean and Sea ice
- Key variables : Global mean quantities, Climatology and variability

Introduction

Evaluation Index

Pattern correlation coefficient (PCC) Normalized root-mean-square error (NRMSE)

Observation

HIS: CERES (radiative fluxes)/ CloudSat (cloud water)/CMAP (pr)/CRU (tas, pr) /ERA-40/ERA-Interim / GPCP(pr), HadCRUT (tas), MODIS (clivi, clwvi, clt), NCEP (ta, ua, va, zg, hus, tas), NOAA-PSD (radiation), OAFlux (surface fluxes)

PI : CMIP5 MME

Performance

- Comparison with CMIP5 MME and individual models.
- Good (upper 30% of CMIP5), Average (50% of CMIP5), poor (below 50% CMIP5)

Introduction

Software

Shell script, NCL script and Ferret

Process

- 1) Preparing model data (NC file format and specific variable names)
- 2) Copy evaluation tools (Scripts and observed data)
- 3) Setup key variables path, period of data and variables to be analyzed
- 4) Run the tools
- 5) Post-processing (making summary table for performance)

Variables

- Atmosphere : Global mean quantities, Climatology, ENSO, EASM, EAWM, MJO, Global monsoon and teleconnection (zero or one)
- Land/Ocean/Seaice : Global mean quantities/Climatology

Table of overall performance (e.g NUIST-CSMv3.0)

Model (No. of variables)		Тор 30%		Тор 50%		Below 50%	
		ens1	ens2	ens1	ens2	ens1	ens2
Atmosphere	Global mean/trends (33)	16	16	12	12	5	5
	Climatology (34)	30	29	3	4	1	1
	ENSO (10)	7	9	2	1	1	0
	Global Monsoon (16)	14	15	2	1	0	0
	East Asian Summer Monsoon (44)	25	31	7	7	12	6
	East Asian Winter Monsoon (25)	23	22	2	3	0	0
	MJO (24)	24	24	0	0	0	0
	Teleconnection (6)	4	4	2	2	0	0
Ocean (36)		23	22	8	9	5	5
Land (28)		21	20	5	6	2	2
Seaice (10)		4	4	5	4	1	2
Total (266)		191 (72%)	196 (74%)	48 (18%)	49 (18%)	27 (10%)	21 (8%)

Atmosphere

- Each evaluation method is coherent and relevant?
- They also can classify good & poor model successfully?
- Is the tool provide key information for further improvement?
 - Global mean quantities
 - Climatology
 - ENSO
 - EASM/EAWM
 - MJO
 - Teleconnection

Atmosphere – global mean quantities (33)

- Temperature : ST, SST, Land T2m, precipitation
- Hydrology : freshwater
- Radiation : Net, SW and LW radiation at TOA and the surface

Red : -0.5 std ~ +0.5 std, Green: -1.0 std ~ +1.0 std, Blue : out of the range -1.0 std ~ +1.0 std

global mean	obs (1979-2005)	MME (1979-2005)	(MME std) (1979-2005)	ens1	ens2
ST (°C)	15.53	15.49	(0.51)	15.28	15.19
land 2m T ($^{\circ}C$)	9.15	9.16	(0.80)	9.06	8.99
precip (mm d ⁻¹)	2.68	2.99	(0.14)	2.82	2.81
SST (°C)	18.26	18.16	(0.56)	17.98	17.87
Fresh water flux (E-P, mm d ⁻¹)		-0.0004	(0.005)	0.001	0.01
TOA energy budget (w m ⁻²)		0.77	(0.43)	0.34	0.50
TOA olr (w m ⁻²)		238.41	(2.95)	235.45	235.58
TOA srad (w m ⁻²)		239.19	(3.03)	235.7	235.88
Surface energy budget (w m ⁻²)		1.31	(0.24)	1.10	1.05
surface energy budget (ocean)		1.62	(0.33)	1.45	1.52
surface energy budget (land)		0.62	(0.68)	0.39	0.50

Atmosphere – global mean quantities

Global Mean Trends (1979-2005) (Historical)

global mean trend (*/100yr)	obs (1979-2005)	MME (1979-2005)	(MME std) (1979-2005)	ens1	ens2
ST (°C)	1.53	1.93	(0.53)	1.55	1.53
land 2m T ($^{\circ}$ C)	2.48	3.10	(0.84)	2.74	2.78
precip (mm d ⁻¹)	0.05	0.12	(0.05)	0.10	0.10
SST (°C)	1.13	1.43	(0.44)	1.05	1.01
Fresh water flux (E-P, mm d ⁻¹)		0.0001	(0.003)	0.0005	0.001
TOA energy budget (w m ⁻²)		2.45	(0.69)	3.11	3.12
TOA olr (w m ⁻²)		-0.81	(1.44)	-1.25	-0.24
TOA srad (w m ⁻²)		3.28	(1.71)	4.39	4.42
Surface energy budget (w m ⁻²)		2.37	(0.66)	1.75	1.83
surface energy budget (ocean)		3.24	(0.95)	2.32	2.35
surface energy budget (land)		0.29	(0.24)	0.73	0.71

Red : -0.5 std ~ +0.5 std, Green: -1.0 std ~ +1.0 std, Blue : out of the range -1.0 std ~ +1.0 std

Atmosphere – global mean quantities

Atmosphere – Climatology (34)

- Climatology is critical for realistic simulation of ISO, monsoon, -ENSO-monsoon relationship
- ✓ Precipitation : annual mean/annual cycle mode (solstice/equinox)
- ✓ SST : annual mean/annual cycle
- ✓ Circulation : zonal mean wind, Hadley circulation, surface winds, SLP, vertical velocity
- ✓ Surface fluxes : evaporation

(bracket : PCC)

	Top 30% of CMIP5 models	Top 50% of CMIP5 models	ENS3	ENS4	ENS5	ENS mean
EQ SST AC*	0.64 (0.79)	0.66 (0.75)	0.62 (0.79)	0.60 (0.80)	0.60 (0.80)	
EQ ZWS AC*	1.64 (0.37)	1.73 (0.35)	1.23 (0.47)	1.34 (0.37)	1.34 (0.37)	
PRCP AM	0.58 (0.85)	0.64 (0.81)	0.49 (0.87)	0.49 (0.87)	0.49 (0.88)	
PRCPAC1	0.66 (0.83)	0.69 (0.81)	0.72 (0.86)	0.69 (0.86)	0.69 (0.87)	
PRCP AC2	0.97 (0.69)	0.99 (0.67)	0.99 (0.58)	0.97 (0.58)	0.98 (0.63)	
SST AM	0.10	0.11	0.10	0.10	0.10	
SST AC1	0.24 (0.97)	0.26 (0.96)	0.29 (0.97)	0.29 (0.97)	0.29 (0.97)	
SST AC2	0.34 (0.95)	0.36 (0.94)	0.41 (0.95)	0.41 (0.95)	0.40 (0.96)	

Atmosphere - Climatology

	top 30% of CMIP5 models	top50% of CMIP5 models	ENS1	ENS2	ENS3	ENS4	ENS5	ENS mean
Zonal Mean U	0.23 (0.98)	0.29 (0.97)			0.23 (0.98)	0.23 (0.98)	0.23 (0.98)	
Evap (land)	0.57 (0.85)	0.58 (0.84)			0.46 (0.88)	0.46 (0.88)	0.46 (0.88)	
Evap (ocean)	0.43 (0.95)	0.45 (0.94)			0.31 (0.95)	0.30 (0.95)	0.31 (0.95)	
V (Hadley circulation)	0.42 (0.92)	0.46 (0.91)			0.34 (0.94)	0.34 (0.94)	0.34 (0.94)	
W (Hadley circulation)	0.55 (0.85)	0.59 (0.84)			0.49 (0.93)	0.49 (0.93)	0.49 (0.92)	
Surface U	0.31 (0.97)	0.33 (0.96)			0.23 (0.97)	0.23 (0.97)	0.23 (0.97)	
Surface V	0.46 (0.92)	0.48 (0.91)			0.40 (0.92)	0.40 (0.92)	0.40 (0.92)	
JJA SLP	0.012	0.013			0.010	0.010	0.011	
DJF SLP	0.008	0.010			0.006	0.006	0.006	
Omega	0.77 (0.72)	0.86 (0.69)						
SST STD	1.03 (0.67)	1.18 (0.65)						
Land T2m STD	0.95 (0.40)	1.02 (0.36)						
precip STD	0.56 (0.87)	0.62 (0.83)						
SLP STD	0.60 (0.85)	0.63 (0.83)						

Red : reach the top 30% Green: reach the top 50% Blue : not reach the top 50%

Annual mean SST

OBS

Good

Poor

0

60°E

120°E

180°

120°W

60°W

00

Annual mean precipitation

OBS

Good

Poor

First annual cycle mode : precipitation

Zonal mean wind

Good

OBS

Poor

15

-15

25

Global Monsoon

1) GMPI (Global Monsoon Precipitation domain & Intensity, Wang et al. 2011)

- Domain : local summer minus winter PRCP exceeding 2 mm/day and local summer PRCP exceeding 55% of annual total PRCP
- Intensity : ratio of local summer-minus-winter PRCP over annual mean PRCP.

2) Seasonal mean & variance

3) Seasonal-reliant EOF (AAM precipitation variability)

Global Monsoon – domain & intensity

Global Monsoon – seasonal mean&variance

Global Monsoon – AAM; seasonal EOF

ENSO

- Amplitude interannual variability & Phase-locking (Wang and Fang, 2000)
- Spatial-temporal variation (Wang and An, 2005)
 - EOF1&2 (multi-time scales)
 - LF (low frequency) & QB (Quasi-biennial) : S-EOF
- Two ENSO type CP/EP ENSO
- Periodicity Power spectrum analysis
- Reference : 20 CMIP5 models data
- OBS : ERSST

NOAA

ENSO diagnostics (10)

		Top 30% of CMIP5 models	Top 50% of CMIP5 models	Y27	Y30
	SSTV	0.68 (0.84)	0.72 (0.83)	0.60 (0.84)	0.54 (0.89)
	EOF1	(0.93)	(0.92)	(0.94)	(0.94)
ENSO	EOF2	(0.39)	(0.26)	(0.33)	(0.45)
	CP-ENSO	(0.85)	(0.83)	(0.90)	(0.85)
	EP-ENSO	(0.93)	(0.91)	(0.93)	(0.93)
	Spectrum	(0.48)	(0.32)	(0.33)	(0.48)
	Phase-locking	(0.86)	(0.83)	(0.87)	(0.74)
	LF-ENSO**	(0.75)	(0.69)	(0.75)	(0.82)
	QB-ENSO**	(0.70)	(0.62)	(0.62)	(0.73)

Average of four seasorR**ed : reach the top 30% Green: reach the top 50% Blue : not reach the top 50%

ENSO-Interannual variability

×□>	ACCESS1-0 CNRM-CM5 GISS-E2-R IPSL-CM5A-LR	+×<	boo-csm1-1 CSIRO-Mk3-6-0 HadGEM2-CC IPSL-CM5A-MR	*0 0	CanESM2 FGOALS g2 HadGEM2-ES MIROC5		CCSM4 GFDL-ESM2M Inmcm4 GFDL-ESM2G	
0	MIRCC-ESM CSMv1a	0	MPLESM LR MOD28		MR CGCM3 MOD31	0	NorESM1-M	

ENSO- EOF analysis

EOF1

PCC for EOF1

CP/EP ENSO

CP ENSO

S-EOF

QB (S-EOF2)

CSMv1a (9.0%)

60°E 00°E 120°E 150°E 180° 150°W 120°W

60"E 90"E 120"E 130"E 180" 150 W 120"W

60°E 90°E 120°E 150°E 180° 150°W 120°W

60°E 90°E 120°E 150°E 180° 150°W 120°W

PCC = 0.16

PCC=0.64

PCC= 0.59

(a) DJF

(b) MAM

(c) JJA

(d) SON

60"N

30°N

0"N

30"8

60'N

30°N

0°N

30"5

60'N

30°N

0°N

30°8

60'N

 $30^{\circ}N$

0"N

30'8

CSMv1a (15.6%)

60°E 90°E 120°E 150°E 150° 50°W 120°W

OBS (14.9%)

PCC-0.65

(a) DJF

OPN

30 N

OW

30%

EON

30 N

0N

307 60°E 90°E 120°E 150°E 150° 150°W 120°W

60°E 90°E 120°E 150°E 180° 150°W 120°W

60"E 00"E 120"E 150"E 180" 150"W 120"W

CSMv1a (29.7%)

PCC=-0.73

PCC--0.69

PCC= 0.67

PCC=-0.59

-0.8 -0.5 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Phase-Locking/Periodicity

Phase-Locking

Periodicity

East Asian Monsoon

- East-Asian diagnostic tools (Li et al, 2018; Wang et al. 2008, 2013; Zhou and Yu 2005)
- Summer

1) Climatology – Planetary-scale circulation : providing background

① Meiyou/Changma/Baiu rainbelt :EA subtropical front

② Location & strength of WPSH : EA rainfall

③ Shift of subtropical westerly jet (40N) : Movement of EA rainbelt

④ Moisture transport by southwesterly & WPSH

2) Annual cycle (Zhu et al. 2012, 110-130E)

- transition dry to rainy season (northward movement of rain band)

3) EASM onset – change of zonal wind at South China Sea (SCS,110~130E, 5-15N)

- 4) Major modes in monsoon : multi-eof (PRCP&GH850)
- 5) EASM-Monsoon relationship (correlation)
- 6) teleconnection regression of suppressed rainfall on zonal wind shear Index

* winter

- 1) climatology
- 2) EOF1,2
- 3) Regression of PRCP, T2m,U200,GH500

Fig.3 Annual cycle climatology (1979-2005) for pentad mean precipitation averaged 110E and 130E from (a) between observation (b) NUIST-ESM-V3 and simulation. The PCC and NRMSF skills are calculated over 10S-40N, 18-60 pentad(Apr.-Nov) (red rectangle). (c) Models' performance on simulation of climatological annual cycle of precipitation in terms of PCC and NRMSF.

Fig. Time evolution (a) of 4 climatological mean South China Sea monsoon onset index from April 10th 10th during 1979-2005 June to obtained from observation and NUIST-ESM-V3 simulation. South China Sea monsoon onset index is defined by 850-hPa zonal winds averaged over 5 – E. (b) 15N, 110 –120 Models' performance simulation of on climatological South China Sea monsoon onset index in terms of PCC and NRMSE.

Fig. 5 Spatial patterns of first two MV-EOF modes of the East Asian precipitation (shadings) and 850-hPa geopotential height (contour) in JJA from (a) observation and (b) NUIST-ESM-V3 simulation during 1979-2005. (c) Models' performance on simulation of the first two MV-EOF modes of the East Asian precipitation and 850-hPa geopotential height in JJA in terms of PCC and NRMSE.

Fig.8 Climatology DJF mean 850hPa winds (vectors, m/s), 850hPa geopotential height (contours, m), 2-metre temperature (shading, mm/day), 500-hPa geopotential height (contours, m) and 200-hPa zonal wind (shading, m/s) from (a) observation and (b) NUIST-ESM-V3 simulation during 1979-2005. Models' performance (c) on simulation of climatological DJF 2-metre mean temperature,850hPa and 500hPa geopotential height as well as 200hPa zonal wind over 0-80N, 60E-150W in terms of NRMSE.

Fig. 10 Spatial patterns of the first and second EOF mode of winter (DJF) mean 2-m air temperature in the entire EAWM domain (0-60N, 100E-140E) from (a) observation and (b) NUIST-ESM-V3 simulation. (c) Models' performance on simulation of spatial patterns of the first and second EOF mode of winter (DJF) mean 2-m air temperature in the entire EAWM domain (0-60N, 100E-140E) in terms of PCC and NRMSE.

Summary of performance on Monsoon in terms of NRMSE and PCC skill (in parentheses)

		Top 30% of CMIP5 models	Top 50% of CMIP5 models	Y27	Y30
	GMPI	0.61 (0.81)	0.66 (0.79)	0.65 (0.82)	0.65 (0.82)
	PRCP Mean in JJA	0.59 (0.83)	0.63 (0.82)	0.49 (0.90)	0.49 (0.90)
GM	PRCP Mean in DJF	0.68 (0.84)	0.71 (0.83)	0.72 (0.89)	0.72 (0.89)
	PRCP VAR in JJA	0.85 (0.71)	0.63 (0.77)	0.63 (0.77)	
	PRCP VAR in DJF	0.76 (0.76)	0.80 (0.73)	0.64 (0.78)	0.56 (0.84)
	SEOF1**	0.89 (0.61)	0.92 (0.58)	0.72 (0.70)	0.62 (0.73)
	SEOF2**	1.18 (0.22)	1.20 (0.10)	1.18 (0.10)	1.02 (0.36)
EAM	Seasonal evolution	0.57 (0.88)	0.63 (0.87)	0.49 (0.91)	0.45 (0.92)

Red : reach the top 30% Green: reach the top 50% Blue : not reach the top 50% **Average of four seasons

MJO

- Dynamics-oriented diagnostics (Wang et al, 2018)
- Reference : 20 CMIP5 models data
- OBS : GPCPv1.2/ERA Interim

MTSAT-2

What controls eastward propagation of MJO?

Fig. 12 Schematic diagram illustrating the mechanisms by which the modified cumulus parameterization schemes affect MJO structures and improve the MJO eastward propagation.

MJO diagnostics (24)

		Boundary of top 30% of CMIP5 models	Boundary of top 50% of CMIP5 models	NUIST -V3SR
	PRE VAR in MJJASO	0.87 (0.72)	0.90 (0.70)	0.85 (0.81)
-	PRE VAR in NDJFMA	0.82 (0.69)	1.02 (0.68)	0.75 (0.80)
	Propagation diagram of PRE (EIO)	0.58 (0.81)	0.62 (0.79)	0.56 (0.91)
MJO	Propagation diagram of PRE (EWP)	0.51 (0.86)	0.56 (0.82)	0.46 (0.90)
	Propagation diagram of 850hPa BLMC (EIO)	0.69 (0.74)	0.76 (0.65)	0.61 (0.80)
	Propagation diagram of 850hPa BLMC (EWP)	0.64 (0.76)	0.67 (0.73)	0.57 (0.80)
	Vertical structure of EPT	0.83 (0.78)	0.86 (0.73)	0.72 (0.78)
	Vertical structure of diabatic heating	0.97 (0.79)	1.0 (0.72)	0.88 (0.82)
	Horizontal structure of U850	0.72 (0.84)	0.80 (0.76)	0.59 (0.84)
	Horizontal structure of Div250	1.06 (0.75)	1.12 (0.72)	1.01 (0.75)
	Horizontal structure of Q250	0.87 (0.81)	0.92 (0.79)	0.87 (0.85)
-	Vertical structure of APE	1.26	1.40	0.54

Examples – Propagation of precipitation & BLMC

PCC

*	ACCESS1-0	+	BNU-ESM	*	CanESM2	0	CMCC-CESM
×	CMOC-CMS	X	CNRM-QMS		CSIRC-Mk3-B-0	0	GFDL-CMS
	GEDL-LOMEG	Δ	GEDL-LSM2M	- 3	FGOALS 02	V	IPSL-CM5A-LH
0	IFSL-CM5A-MB	*	IPSL-CM5B-LR	0	MIROC5	*	MIROC-ESM-CHEN
D.	MIFOC ESM	0	MPI ESM LR	10	MRI CGCM3	8	NorESMI M

BLMC (EWP)

Premoistening/Predestabilization/Promoting EAPE

Large-scale circulation (Coupled Rossby-Kelvin Wave)

Q250/Div250

Teleconnection

1) AO,AAO,PNA,PDO,NAO

	top 30% of CMIP5 models	top 50% of CMIP5 models	ENS1	ENS2	ENS3	ENS4	ENS5	ENS mean
AO	(0.93)	(0.90)	(0.96)		(0.95)	(0.93)	(0.93)	
AAO	(0.96)	(0.94)	(0.96)		(0.96)	(0.96)	(0.97)	
PNA	0.75 (0.84)	1.76 (0.80)	1.7 (0.84)		1.7 (0.89)	1.7 (0.69)	1.7 (0.84)	
PDO	(0.78)	(0.71)	0.71		0.88	0.71	0.83	
NAO	(0.78)	(0.75)	.89		0.90	0.85	0.89	

Teleconnection - PNA

ocean

.....

NA-tuin-	Тор 3	Тор	50%	ENS3		
Metrics	PCC	NRMSE	PCC	NRMSE	PCC	NRMSE
Wind Stress Mag	0.92	0.43	0.90	0.47	0.93	0.44
Wind Stress Curl	0.81	0.61	0.79	0.66	0.79	0.63
Down Net Heat Flux	0.81	0.95	0.78	0.97	0.83	0.88
Down Fresh Water	0.67	0.88	0.63	0.94	0.85	0.59
Sea Surf Temp	0.99	0.12	0.99	0.13	1.00	0.11
Sea Water Temp - EQ	0.98	0.23	0.98	0.26	0.99	0.26
Sea Water Temp - GLB Zonal Avg	0.99	0.16	0.99	0.25	1.00	0.11
Sea Surf Salin	0.92	0.51	0.90	0.57	0.94	0.43
Sea Water Salin - GLB Zonal Avg	0.92	0.68	0.90	0.74	0.90	0.50
Therm Depth - 20 degC	0.85	0.59	0.81	0.63	0.87	0.55
Mixed Layer Depth – 0.5 degC	0.82	0.80	0.77	0.88	0.81	1.07
Max Mixed Layer Depth -0.5 degC	0.52	1.03	0.50	1.10	0.63	1.1
Sea Surf Height	0.99	0.28	0.98	0.57	0.98	0.19
Sea Surf Curr Mag	0.82	0.64	0.78	0.67	0.84	0.57
Upper Lev Zonal Curr - EQ Pacif	0.94	0.36	0.93	0.44	0.86	0.53
Upper Lev Zonal Curr - Pacific	0.89	0.43	0.87	0.54	0.79	0.53
GMOC	0.86	0.69	0.82	0.73	0.91	0.47
AMOC	0.68	0.90	0.62	1.03	0.66	0.84

11.16 Sea Water Temperature Latitude-Depth Section

12.16 Sea Water Salinity Longitude-Depth Section

23.16 Meridional Overturning Streamfunction (Global)

Comparison with CMIP5 models by PCC and NRMSE

23.17 Meridional Overturning Streamfunction (Atlantic)

0

0

8

0.80

X CanESM2

GFDL-CM3

X MPI-ESM-MR

HadGEM2-ES

Land

Land diagnostic variables

No.	Variables	Features	Observations				
01	Air surface temperature at 2m						
02	Maximal air surface temperature	Temperature	CRU&UDEL				
03	Minimal air surface temperature						
04	Surface albedo		MODIS				
05	Net solar radiation at surface	7					
06	Net radiation at surface	7					
07	Net solar radiation at surface (clear sky)	7					
08	Downwelling solar radiation at surface	7					
09	Net longwave radiation at surface	UERES					
10	Net longwave radiation at surface (clear sky)	energy budget					
11	Downwelling longwave radiation at surface	7					
12	Sensible heat flux		FLUXNFT-MTF				
13	Latent heat flux						
14	Outgoing longwave at TOA (OLR)		05550				
15	Net radiation at TOA	Energy	CERES				
16	Net solar radiation at TOA						
17	Incoming solar radiation at TOA						
18	Total cloud cover	Cloud	ISCCP				
19	Precipitation		CRU&UDEL				
20	Soil moisture	Surface	CCI				
21	Runoff	features	GRDC				
22	Snow depth		CMC				
23	Surface wind speed at 10 m						
24	U at 10m	Wind	ECMWF-interim				
25	V at 10m	7					

Variab les	Term	CMIP5 top 1/3		CMIP5 top 1/2		ENS1		ENS2		ENS3		ENS4		ENS5		ENS MEAN	
		NRMS E	PCC	NRMS E	PCC	NRM SE	PCC	NRM SE	PCC	NRM SE	PCC	NRM SE	PCC	NRM SE	PCC	NRM SE	PCC
PR	AM	0.61	0.79	0.65	0.76					0.6	0.85	0.6	0.85	0.6	0.85		
	AC	0.71	0.76	0.72	0.74					0.7	0.85	0.7	0.85	0.7	0.85		
T2M	AM	0.16	0.99	0.17	0.98					0.17	0.98	0.17	0.98	0.17	0.98		
	AC	0.27	0.98	0.27	0.98					0.21	0.98	0.21	0.98	0.21	0.98		
	Abs- BIAS	0.34		0.47						0.34		0.34		0.34			
RAD	AM	0.19	0.97	0.2	0.97					0.22	0.96	0.22	0.96	0.22	0.96		
	AC	0.3	0.97	0.33	0.97					0.25	0.98	0.25	0.98	0.25	0.98		
	Abs- BIAS	2.01		5.56						1.85		1.85		1.85			
SHFL X	AM	0.77	0.78	0.84	0.77					0.82	0.84	0.82	0.84	0.82	0.84		
	AC	0.8	0.87	0.86	0.86					0.65	0.86	0.65	0.86	0.65	0.86		
LHFL X	AM	0.55	0.89	0.58	0.87					0.49	0.92	0.49	0.92	0.49	0.92		
	AC	1.12	0.65	1.24	0.62					0.56	0.92	0.56	0.92	0.56	0.92		
LAI	AM	0.76	0.79	0.93	0.79					0.64	0.81	0.64	0.81	0.60	0.89		
	AC	0.75	0.72	0.96	0.57					0.93	0.56	0.93	0.56	0.89	0.60		

Land - precipitation

Land-radiation

	Vars		CMIP5 top 1/3	CMIP5 top 1/2	V3.SR-Y27
	Sea Ice Area (SIA)	АМ	0. 322	0. 699	-0.105
U	Bias	AR	0. 713	1.476	1.575
rcti	Sea Ice Concentration (SIC) NRMSE	АМ	0. 502	0.615	0.311
Ä		Feb	0. 525	0.673	0.363
		Sep	0. 616	0. 736	0.670
	Sea Ice Area (SIA)	АМ	1.074	3. 156	-1.481
tic	Bias	AR	1.028	2.646	0.057
tarc	Sea Ice Concentration (SIC) NRMSE	АМ	0. 792	0.913	0.876
An		Feb	0. 897	1.024	0.977
		Sep	0. 793	0.893	1.073

Summary

- The tools is relatively easy to use (semi-automatic)
- All methods are coherent and relevant dynamically and physically
- The tool can show how our model is good?
- This tools shows Key factor where we should improve parameterization if model is poor (e.g. MJO)
- CMIP5 models are improved compared to CMIP3 but not much.
- All CMIP5 model performance are limited for MJO and monsoon, particularly EA.
- Antarctic sea ice simulation is relatively poor in CMIP5 models
- AMOC is one of critical simulation in CMIP5 models

Limitation

- Weak for model inter-comparision & future projection (e.g. ESMvalTOOL)
- Not include environmental factors (e.g. Aerosol, chemistry, biology)

Mahalo!