How convective parameterization and Cloud microphysics affect climate simulation? - sub-seasonal to decal variability -

## Young-Min Yang and Bin Wang

IPRC, University of Hawaii at Manoa ESMC, NUIST

#### "Subseasonal to Seasonal climate forecast will be widely used a decade from now as weather forecasts are today."



Subseasonal forecast on a time scale of 2-8 weeks has immense social-economic benefits for hazard prevention, risk management, economic planning, and shaping policy decision making.

SOURCE: Modified from the Earth System Prediction Capability Office.

Source: "Next Generation Earth System Prediction: Strategies for Subseasonal to Seasonal Forecasts" NAS report 2016

## **Convective parameterization**

• Cloud budget equation for  $\varepsilon$ ,  $h_u(T_{vu})$ ,  $q_t(l_u)$ 

# $\frac{\partial \eta}{\partial z} = (\varepsilon - \delta)\eta$ $\frac{\partial h_u}{\partial z} = -\varepsilon (h_u - \bar{h}) + S_h$ $\frac{\partial q_t}{\partial z} = -\varepsilon (q_t - \bar{q}) + S_{q_t}$

 $S_h$ ,  $S_{q_t}$ : source/sink term

 $S_{q_t} = cl_u$ 

Entrainment rate

Initiation of convection

Cloud microphysics : conversion rate of cloud water to rainfall

Closure (cloud base mass flux)

 $\varepsilon, \delta$ : entrainment / detrainment rate  $h_{\mu}$ : moist static energy (MSE) of updraft  $q_t$ : total water of updraft  $q_u$  : water vapor of updraft  $l_u$ : liquid water of updraft  $L_c$  : coefficient of latent heat  $\overline{q^*}$  : grid mean saturated specific humidity  $\overline{h^*}$  : grid mean saturated MSE  $l_u$  : liquid water of updraft  $T_{\nu\mu}$ : virtual temperature of updraft g: gravity z : height c : conversion ratio of cloud liquid water to rain drop

zt = height at cloud top

## **Cloud Resolving Model**



4

## **Budget of microphysical processes**

(a)Light precipitation (0 – 10 mm day<sup>-1</sup>)



Processes : g/g/s

(b) Heavy precipitation (> 60 mm day<sup>-1</sup>)



#### **Experiment design**

| Exp. | Convective parameterization    | Modified scheme                                    |
|------|--------------------------------|----------------------------------------------------|
| CTL  | Tiedtke scheme (Tiedtke, 1989) | -                                                  |
| TRG  | Tiedtke scheme (Tiedtke, 1989) | BL depth-dependent convective trigger function     |
| ENT  | Tiedtke scheme (Tiedtke, 1989) | Increased entrainment for deep convection          |
| CMP  | Tiedtke scheme (Tiedtke, 1989) | Reduced conversion rate of cloud water to rainfall |
| MOD  | Tiedtke scheme (Tiedtke, 1989) | TRG+ENT+CMP                                        |

- 1990's fixed forcing
- NESMv3-SR
- 50yr integrations are used for analysis

## NUIST-ESM V3



**Dec. 2016** 

Cao, Wang, Yang et al. 2015, 2017

#### Correlation map of Land precipitation, SSTA and 850 hPa wind anomalies wrt DJF Nino-3.4 SSTA



## This talk discusses these issues

#### 1) Sub-seasonal

"Improving MJO simulation by enhancing lower tropospheric heating - boundary layer convergence feedback"

#### 2) Seasonal

"Sensitivity of moist physical parameterization on East Asia monsoon"

- seasonal evalution, large-scale circulation and ENSO-monsoon relationship"

#### 3) Interannual

"Impact of convective parapmeterization on ENSO variability : role of atmospheric feedback"

#### 4) Inter-decal

"How convective parameterization affect global warming slowdown? role of atmosphere heating and circulation"

"Improving MJO simulation by enhancing lower tropospheric heating - boundary layer convergence feedback" Vertical Structure and Diabatic Processes of the MJO: *Global Model Evaluation Project* MJO Task Force/YOTC and GASS 2012

Lag-regression of rainfall with Indian Ocean base point (70-90E; 5S-5N)

> 20-100day filtered dash line – 5 m/s

Jiang et al. 2015



# Experiments with modified convective parameterization schemes in the NUIST v3

| Exp.    | Convective parameterization                          | Modified scheme                                      |
|---------|------------------------------------------------------|------------------------------------------------------|
| CTL-TDK | Tiedtke scheme (Tiedtke, 1989)                       | -                                                    |
| TRG     | Tiedtke scheme (Tiedtke, 1989)                       | BL depth-dependent convective trigger function (TRG) |
| SHC     | Tiedtke scheme (Tiedtke, 1989)                       | Bottom-heavy diffusivity in shallow convection (SHC) |
| M-TDK   | Tiedtke scheme (Tiedtke, 1989)                       | TRG + SHC                                            |
| CTL-SAS | Simplified Arakawa-Schubert scheme (Lee et al. 2001) | -                                                    |
| M-SAS   | Simplified Arakawa-Schubert scheme (Lee et al. 2001) | TRG +SHC                                             |



#### Improved eastward propagation

Figure 1. Propagation of precipitation as MJO depicted by the lead-lag correlation of 20-70 day filtered precipitation averaged over 10°S-10°N with reference to the precipitation at the MJO convective center over the equatorial Indian Ocean (10°S-10°N, 80°-100°E) during boreal winter (NDJFMA) derived from (a) observation and model simulations the in experiments of (b) CTL-TDK, (c) TRG, (d) SHC, (e) M-TDK, (f) CTL-SAS and (g) M-SAS. The red contour represents the correlation coefficient of  $\pm 0.2$ . Black lines indicate dotted eastward propagation speed of 5 m s<sup>-1</sup>.



Improved Horizontal structure of diabatic heating at 700hPa







**FIG.4** Equatorial zonal asymmetry in the diabatic heating (K day<sup>-1</sup>, shading) and anomalous Walker cell (m s<sup>-1</sup> for zonal wind and 0.01 Pa s<sup>-1</sup> for the vertical velocity, vector) averaged between 5°S and 5°N in the observation (a) and model simulations (b)-(e). The structures in each panel are reconstructed using the same method as used in Fig. 3.



**Fig. 10** Comparison of the dynamic structures simulated in CTL-SAS and M-SAS. (a) and (b) Horizontal structure of diabatic heating (K day<sup>-1)</sup> at 700 hPa in C-SAS and M-SAS. (c) and (d) Horizontal structure of 850 hPa wind (m s<sup>-1</sup>, vector) and 850 hPa zonal wind speed (U850) (m s<sup>-1</sup>, shading) in C-SAS and M-SAS. (e) and (f) horizontal structure of boundary layer moisture convergence (day<sup>-1</sup>) at 925 hP in C-SAS and M-SAS. The structures are regressed 20-70 day band pass filtered fields with reference to the MJO precipitation anomaly in the equatorial Indian Ocean (10S-10N, 80-100E), which is symbolized by the black filled circle. The regression strengths are scaled to a fixed 3mm day<sup>-1</sup> precipitation rate.



**FIG.11** Comparison of the vertical structures simulated in CTL-SAS and M-SAS. (a) and (b) diabatic heating (K day<sup>-1</sup>, shading) and anomalous Walker cell (m s<sup>-1</sup> for zonal wind and 0.01 Pa s<sup>-1</sup> for vertical velocity, vector) averaged between 5°S-5°N. (c) and (d) Eddy available potential energy (APE) generation rate (K<sup>2</sup> day<sup>-1</sup>, contour) and temperature anomalies (K, shading) averaged between 5°S-5°N. The structures are regressed 20-70 day band pass filtered fields with reference to the precipitation anomaly in the equatorial Indian Ocean (10S-10N, 80-100E). The regression strengths are scaled to a fixed 3mm day<sup>-1</sup> precipitation rate and averaged over 5S-5N. The intervals of contour in (c) and (d) are same as that of shading

## Why MODIFICATIONS work



## Summary

How to improve GCM simulation of MJO? Modification of the convective parameterization schemes: a) a BL depth-dependent convective trigger (TRG), and b) a bottom-heavy diffusivity in the shallow convection scheme (SHC), aiming to enhance BLMC feedback on convection.

Results: In the NUIST-ESM, modified Tidtke (M-TDK) Simplified Arakawa-Schubert (M-SAS) convective schemes have significantly improved the quality of MJO simulation.

Why do the modification leads to improved simulation? Implications: Correct simulation of the heating induced by shallow and/or congestus clouds and its interaction with BL dynamics is critical to realistic simulation of the MJO.

## "Role of topography of Tibet on northward propagation"

Does topography over Tibet affect northward propagation of precipitation?

- Using same model (M-TDK scheme)
- Decreasing topograhy : 100%, 75%, 50%, 25%, 0%

• Wind shear is critical for simulating northward propagation of precipitation

#### Lag correlation of Precipitation (Indian Ocean, Winter)





#### TOPO 50%

#### TOPO 20%

#### **TOPO 0%**

#### Lag correlation of precipitation (Indian ocean, Boreal summer)



#### TOPO 50%

#### TOPO 20%

#### **TOPO 0%**

## Wind shear (U200-U850)

Торо 100%

#### Торо 50%



How topography over Tibet affect northward propagation of precipitation?

# Sensitivity of convective parameterization on ENSO amplitude - role of atmospheric feedback -

Yang and Wang (2018, Submitted)

## Introduction

#### EL NIÑO CLIMATE IMPACTS



NOAA Climate.gov

## Introduction



Black : observation (0.9) Blue : CMIP3, Red : CMIP5

#### **GFDL climate model**



#### **Experiment design**

| Exp. | Convective parameterization    | Modified scheme                                    |
|------|--------------------------------|----------------------------------------------------|
| CTL  | Tiedtke scheme (Tiedtke, 1989) | -                                                  |
| TRG  | Tiedtke scheme (Tiedtke, 1989) | BL depth-dependent convective trigger function     |
| ENT  | Tiedtke scheme (Tiedtke, 1989) | Increased entrainment for deep convection          |
| CMP  | Tiedtke scheme (Tiedtke, 1989) | Reduced conversion rate of cloud water to rainfall |
| MOD  | Tiedtke scheme (Tiedtke, 1989) | TRG+ENT+CMP                                        |

- 1990's fixed forcing
- NESMv3-SR
- 50yr integrations are used for analysis

#### **ENSO interannual variability**













## What controls SST variability? – budget analysis

$$I_{BJ}=\frac{R}{2},$$

R = CD + TD + ZA + EK + TC.

 $ZA = \mu_a \beta_u \left\langle \frac{-\partial \bar{T}}{\partial x} \right\rangle_E,$ 

CD: damping feedback by ocean curren

TD : thermodynamic damping

ZA : Zonal advective feedback

- EK : Ekman feedback
- TC : thermocline feedback

$$EK = \mu_a \beta_w \left\langle \frac{-\partial \bar{T}}{\partial z} \right\rangle_E,$$

$$CD = -\left(\frac{\langle \bar{u} \rangle_E}{L_x} + \frac{\langle -2y\bar{v} \rangle_E}{L_y^2} + \frac{\langle H(\bar{w})\bar{w} \rangle_E}{H_m}\right),$$

$$TC = \mu_a \beta_h \left\langle \frac{\bar{w}}{H_1} \right\rangle_E.$$

 $TD = -\alpha$ ,

 $-\alpha = -\alpha_{SW} - \alpha_{LW} - \alpha_{SH} - \alpha_{LH},$ 

## **Ocean budget analysis**







#### **Coupled strength (Zonal wind stress feedback)**

Zonal wind stress regressed on Nino3.4



#### **Coupled strength (Zonal wind stress feedback)**

**Precipitation regressed on Nino3.4** 



2





## Summary

1. ENSO variability is sensitive to atmospheric convective parameterizations

- 2. The advective and thermodynamics feed is critical for ENSO amplitude
- 3. The advective feedback depends on change of wind stress, which results from change of precipitation.
- 4. Change of cloud by modified parameterization affect thermodynamic feedback

# "Sensitivity of convective parameterization on East Asia monsoon "

#### Limitation of climate model simulation



X GNRM-CM5

inmcm4

CMIP5 MME

MIROC-ESM-CHEM

occ-csm1-1-m

IPSL-CM5A-LR

MPI-ESM-LB

CMIP3 MME

CSIRO-Mk3-6-0

٥

 $\odot$ 

Δ

п

 $\nabla$ 

0

#### Seasonal evolution



Multi EOF (PR&GH850)



#### **Model problems – Large-scale circulation**



Excessive precipitation over WP

#### Model problems – Monsoon onset

SCS Index (5°–15°N and 110°–120°E) (Wang et al, 2004)





 Delayed response of convection on increased SST

Too sensitive to change of SST

## Model problems : EAWM-ENSO relationship



**Correlation of rainfall & NINO3.4** 

- Poor horizontal pattern
- Too strong response to ENSO

#### **Interannual variability**



- Strong SST variability
- Shift to westard

#### **Observed** features



FIG. 1. (a)–(c) (left) Vertical structure and (right) occurrence frequency distribution of the heavy rain types classified by K-means clustering analysis. The percentage in the (left) represents the percentage occurrence of the corresponding type. While the area given in the (left) represents the rain area of a  $5^{\circ} \times 5^{\circ}$  grid box, but averaged over the entire domain. Geopotential height (gpm, solid lines) and water vapor flux (ms<sup>-1</sup>, arrows) for the 10-yr summer mean at 850-hPa level are also shown in the bottom-right figure.

Land : deep clouds

Ocean ; middle or shallow clouds



#### **Experiment design**

| Exp. | Convective parameterization    | Modified scheme                                    |
|------|--------------------------------|----------------------------------------------------|
| CTL  | Tiedtke scheme (Tiedtke, 1989) | -                                                  |
| TRG  | Tiedtke scheme (Tiedtke, 1989) | BL depth-dependent convective trigger function     |
| ENT  | Tiedtke scheme (Tiedtke, 1989) | Increased entrainment for deep convection          |
| CMP  | Tiedtke scheme (Tiedtke, 1989) | Reduced conversion rate of cloud water to rainfall |
| MOD  | Tiedtke scheme (Tiedtke, 1989) | TRG+ENT+CMP                                        |

- 1990's fixed forcing
- NESMv3-SR
- 50yr integrations are used for analysis

# Large-scale climatological circulation



CTL



TRG



CMP



60°E 90°E 120°E 150°E 180° 150°W 60°E 90°E 120°E 150°E 180° 150°W

SHC



ENT





## **Ratio of convective to total rainfall**

TRMM (Song and Smith 2008)



CMP

40~50%







40

140°E













#### Large-scale climatological circulation

#### Stream function & non-Precipitation (JJA) divergent wind (850hPa) TRG-CTL 40E 50E 50E 70E B0E 90E100B 10B 20B 30B 40E 50B 60B 70E1 B0 70W50W50W40W30W20W10W00Y80 120% CMP-CTL 40F 50F BOF 70F 80F 90F1008 108 203 308 403 508 605 70F180 70% 50% 50% 40% 30% 20% 10% 50% 50% SHC-CTL 120W 120E 160 10 **ENT-CTL** 40E 50E 60E 7CE 80E 90E1 008 108 208 308 408 508 608 70E1 80 190 120W 60E 120E ALL-CTL 120W

DE 80E 90E100E 10E 20E 30E 40E 50E 60E 70E180 70W60W50W40W30W20W

#### Monsoon onset





26 J APR 84PR 114PR 164PR 214PR 284PR 1MAY 8MAY 11MAY 18MAY 21MAY 28MAY 28MAY 20 00 00 1000

27

41

- 3

6

## **EASM-ENSO** relationship



140°E

100°E

CTL

120°E

Ε

100°E

TRG

.

1

120°E

Ξ

140°E

120°E

100°E

140°E



#### **Teleconnection (regression of rainfall on wind shear index**

WSI= U850 (110°E -140°E; 22.5° N-32.5°N) - U850 (90°E -130°E; 5° N-15°N)





SHC





110°E 120°E 130°E. 140°E 100°E

50°N

40°N

30°N

20°N

10 N

PRE: PCC= 0.69 NUIST-ESM-V3 NRMSE= 0.82 GH850: PCC= 0.92 lm/s NRMSE= 0.72 - 20 6-5-4 120°E 130°E 140°E

MOD

PRE: PCC= 0.82

NRMSE= 0.62

GH850: PCC= 0.96

NRMSE= 0.54

130°E

140°E

100 E

110'E

CMP

**ENTR** 



100°E 110°E 120°E 130°E 140°E How convective parameterization affect global warming slowdown? role of atmosphere heating and circulation"

## **Global warming slowdown – "Hiatus"**



- Global warming trends after 2000yr
- OBS : slowdown
- CMIPT5: continuously warming.



#### Simulation of global warming slowdown



#### **Historical run**



- Modified convective parameterization
- Original convective parameterization
- Observation

#### **Interdecadal Pacific Oscillation**



OBS

MOD

CTL

#### **Inter-Decadal oscillation of zonal wind stress**



#### **Impact of AMO on Pacific**

CGCM

AMO SST forced experiment – control experiment

Kang et al. 2014





Less rainfall

Stronger easterly wind

#### **AMO** simulation



#### What control AMO?



#### **Decal pattern of SLP in models**





## How MODIFICATIONS work



Mechanisms by which the modified cumulus schemes affect global warming simulation through IPO and